Proceedings of the CyberTraining REU2022

CyberTraining for Students and Technologies from Generation Z

Editors Gregor von Laszewski, Geoffrey C. Fox, laszewski@gmail.com

12 October, 2022

Contents

1.1 REU 2022 •
1.1.1 Overview 15 1.2 Teaching Material and Course Websites ? 16 1.2.1 Books 16 1.2.2 The repository for our report 17 1.2.3 Slack 17 1.2.4 Asking for technical help 17 1.2.5 Rivanna Information 18 1.2.6 Git Bash 18 1.2.7 PyCharm 18 1.2.8 Bibliography Management 18 1.2.9 Administrative Links 19 1.3 CONTRIBUTION 19 1.3.1 Contributors ? 19 1.3.2 Calender ? 19 1.3.3 Avoid Duplication ? 19 1.3.4 GitHub Insights ? 20 1.3.5 Issues ? 20 1.3.6 Teamwork ? 21 2 DEVELOPMENT ENVIRONMENT 22 2.1.1 Windows 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.2 Teaching Material and Course Websites ? 16 1.2.1 Books 16 1.2.2 The repository for our report 17 1.2.3 Slack 17 1.2.4 Asking for technical help 17 1.2.5 Rivanna Information 18 1.2.6 Git Bash 18 1.2.7 PyCharm 18 1.2.8 Bibliography Management 18 1.2.9 Administrative Links 19 1.3 CONTRIBUTION 19 1.3.1 Contributors ? 19 1.3.3 Avoid Duplication ? 19 1.3.4 GitHub Insights ? 20 1.3.5 Issues ? 20 1.3.6 Teamwork ? 21 2 DEVELOPMENT ENVIRONMENT 22 2.1.1 Windows 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.2.1 Books 16 1.2.2 The repository for our report 17 1.2.3 Slack 17 1.2.4 Asking for technical help 17 1.2.5 Rivanna Information 18 1.2.6 Git Bash 18 1.2.7 PyCharm 18 1.2.8 Bibliography Management 18 1.2.9 Administrative Links 19 1.3 CONTRIBUTION 19 1.3.1 Contributors O 19 1.3.3 Avoid Duplication O 19 1.3.4 GitHub Insights O 20 1.3.5 Issues O 20 1.3.6 Teamwork O 21 2 DEVELOPMENT ENVIRONMENT 22 2.1.1 Windows 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.2.2 The repository for our report 17 1.2.3 Slack 17 1.2.4 Asking for technical help 17 1.2.5 Rivanna Information 18 1.2.6 Git Bash 18 1.2.7 PyCharm 18 1.2.8 Bibliography Management 18 1.2.9 Administrative Links 19 1.3 CONTRIBUTION 19 1.3.1 Contributors O 19 1.3.2 Calender O 19 1.3.3 Avoid Duplication O 19 1.3.4 GitHub Insights O 20 1.3.5 Issues O 20 1.3.6 Teamwork O 21 2 DEVELOPMENT ENVIRONMENT 22 2.1.1 Windows 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.2.3 Slack 17 1.2.4 Asking for technical help 17 1.2.5 Rivanna Information 18 1.2.6 Git Bash 18 1.2.7 PyCharm 18 1.2.8 Bibliography Management 18 1.2.9 Administrative Links 19 1.3 CONTRIBUTION 19 1.3.1 Contributors • 19 1.3.2 Calender • 19 1.3.3 Avoid Duplication • 19 1.3.4 GitHub Insights • 20 1.3.5 Issues • 20 1.3.6 Teamwork • 21 2 DEVELOPMENT ENVIRONMENT 22 2.1.1 Windows 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.2.4 Asking for technical help 17 1.2.5 Rivanna Information 18 1.2.6 Git Bash 18 1.2.7 PyCharm 18 1.2.8 Bibliography Management 18 1.2.9 Administrative Links 19 1.3 CONTRIBUTION 19 1.3.1 Contributors O 19 1.3.2 Calender O 19 1.3.3 Avoid Duplication O 19 1.3.4 GitHub Insights O 20 1.3.5 Issues O 20 1.3.6 Teamwork O 21 2 DEVELOPMENT ENVIRONMENT 22 2.1.1 Windows 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.2.5 Rivanna Information 18 1.2.6 Git Bash 18 1.2.7 PyCharm 18 1.2.8 Bibliography Management 18 1.2.9 Administrative Links 19 1.3 CONTRIBUTION 19 1.3.1 Contributors • 19 1.3.2 Calender • 19 1.3.3 Avoid Duplication • 19 1.3.4 GitHub Insights • 20 1.3.5 Issues • 20 1.3.6 Teamwork • 21 2 DEVELOPMENT ENVIRONMENT 22 2.1.1 Windows 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.2.6 Git Bash 18 1.2.7 PyCharm 18 1.2.8 Bibliography Management 18 1.2.9 Administrative Links 19 1.3 CONTRIBUTION 19 1.3.1 Contributors • 19 1.3.2 Calender • 19 1.3.3 Avoid Duplication • 19 1.3.4 GitHub Insights • 20 1.3.5 Issues • 20 1.3.6 Teamwork • 21 2 DEVELOPMENT ENVIRONMENT 22 2.1 Install • 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.2.7 PyCharm 18 1.2.8 Bibliography Management 18 1.2.9 Administrative Links 19 1.3 CONTRIBUTION 19 1.3.1 Contributors • 19 1.3.2 Calender • 19 1.3.3 Avoid Duplication • 19 1.3.4 GitHub Insights • 20 1.3.5 Issues • 20 1.3.6 Teamwork • 20 1.3.6 Teamwork • 21 2 DEVELOPMENT ENVIRONMENT 22 2.1.1 Windows 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.2.8 Bibliography Management 18 1.2.9 Administrative Links 19 1.3 CONTRIBUTION 19 1.3.1 Contributors • 19 1.3.2 Calender • 19 1.3.3 Avoid Duplication • 19 1.3.4 GitHub Insights • 20 1.3.5 Issues • 20 1.3.6 Teamwork • 20 2.1 Install • 22 2.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.2.9 Administrative Links 19 1.3 CONTRIBUTION 19 1.3.1 Contributors 19 1.3.2 Calender 19 1.3.3 Avoid Duplication 19 1.3.4 GitHub Insights 20 1.3.5 Issues 20 1.3.6 Teamwork 21 2 DEVELOPMENT ENVIRONMENT 22 2.1 Install 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.3 CONTRIBUTION 19 1.3.1 Contributors 19 1.3.2 Calender 19 1.3.3 Avoid Duplication 19 1.3.4 GitHub Insights 20 1.3.5 Issues 20 1.3.6 Teamwork 21 2 DEVELOPMENT ENVIRONMENT 22 2.1 Install 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.3.1 Contributors • 19 1.3.2 Calender • 19 1.3.3 Avoid Duplication • 19 1.3.4 GitHub Insights • 20 1.3.5 Issues • 20 1.3.6 Teamwork • 21 2 DEVELOPMENT ENVIRONMENT 22 2.1 Install • 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.3.2 Calender () 19 1.3.3 Avoid Duplication () 19 1.3.4 GitHub Insights () 20 1.3.5 Issues () 20 1.3.6 Teamwork () 21 2 DEVELOPMENT ENVIRONMENT 22 2.1 Install () 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.3.3 Avoid Duplication () 19 1.3.4 GitHub Insights () 20 1.3.5 Issues () 20 1.3.6 Teamwork () 21 2 DEVELOPMENT ENVIRONMENT 22 2.1 Install () 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.3.4 GitHub Insights • 20 1.3.5 Issues • 20 1.3.6 Teamwork • 21 2 DEVELOPMENT ENVIRONMENT 22 2.1 Install • 22 2.1.1 Windows 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.3.5 Issues 20 1.3.6 Teamwork 21 2 DEVELOPMENT ENVIRONMENT 22 2.1 Install 22 2.1.1 Windows 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
1.3.6 Teamwork • 21 2 DEVELOPMENT ENVIRONMENT 22 2.1 Install • 22 2.1.1 Windows 23 2.1.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
2 DEVELOPMENT ENVIRONMENT 22 2.1 Install •
2.1 Install ()
2.1.1 Windows 23 2.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
2.1.1 Git Bash install 23 2.1.1.2 Python 3.10 install 24
2.1.1.2 Python 3.10 install 2.1.1.2 Python 3.10 install 2.1.1.2 Python 3.10 install 2.1.1.2 Python 3.10 install 1.1.1.1 2.1.1.2 Python 3.10 install 1.1.1.1 1.1.1.1 2.1.1.2 1.1.1.1 <th1.1.1< th=""></th1.1.1<>
2 1 1 3 Installing cloudmesh 25
2.1.1.6 Install 25
212 Choco install 25
2.1.3 Install Chocolatev 26
2.1.4 Installing Useful Developer Programs
2.1.5 Linux 27
2.1.5.1 Install Python 3.10.5
2.1.5.2 Setting up the veny
2.1.5.3 Uninstall
2.1.5.4 Update

	2.1.6	macOS			28
		2.1.6.1	Xcode In	stall	28
		2.1.6.2	Cloudme	esh	28
		2	.1.6.2.1	Install	28
		2	.1.6.2.2	Uninstall	29
		2.1.6.3	Update		29
		2.1.6.4	Homebr	ew install	30
2.2	WINDO	OWS			30
	2.2.1	Configur	ring Windo	ows for Research 🖓	30
		2.2.1.1	Setting l	Jp the Python Environment	30
		2.2.1.2	Install C	hocolatey	31
		2.2.1.3	Install G	it Bash	31
		2.2.1.4	Install P	yCharm, emacs, and Docker	32
		2.2.1.5	Configu	re PyCharm	32
		2	.2.1.5.1	Set hard wrap	32
		2	.2.1.5.2	Makefile Tab configuration and formatting	32
		2.2.1.6	Preparin	g for Virtualization	33
		2	.2.1.6.1	Docker	33
		2	.2.1.6.2	WSL	33
	2.2.2	Using Gi	t Bash on	Windows 🗘	34
		2.2.2.1	Troubles	shooting	35
	2.2.3	How to A	Auto-launo	ch SSH Agent on Windows 🖓	35
	2.2.4	How to I	nstall WSL	Ubuntu 22.04 on Command Line for Windows 🧿	37
	2.2.5	How to P	(ill a Proce	ess using Command Line on Windows 🔉	37
		2.2.5.1	Using PI	D	37
		2.2.5.2	Using Pr	ocess Name	38
2.3	HPC R	ESOURCE	S		38
	2.3.1	Rivanna	O		38
		2.3.1.1	Links .		38
		2.3.1.2	Logging	in to Rivanna via web interface	39
		2.3.1.3	Superpo	d	40
		2.3.1.4	Special I	DGX Nodes on Rivanna	40
		2	.3.1.4.1	Starting interactive job	41
		2.3.1.5	Connect	ing to UVA Anywhere VPN via CLI	42
		2.3.1.6	Installin	g Python 3.10.5 on Rivanna with ENV3	43
		2	.3.1.6.1	Activate Python3	43
		2	.3.1.6.2	.bashrc	43
		2	.3.1.6.3	Installing Cloudmesh into Rivanna	43

			2.3.1.6.4 Example Script for Using GPUs	44			
			2.3.1.6.5 How to Activate Different GPUs	44			
			2.3.1.7 Allocations	45			
			2.3.1.8 SSH Config	45			
			2.3.1.9 Links	46			
		2.3.2	Run Python MPI programs on Rivanna 🖓	46			
			2.3.2.1 SBATCH in Bash Files	46			
			2.3.2.2 Running in SBATCH	47			
			2.3.2.3 mlp_mnist.sh	48			
			2.3.2.3.1 Makefile	48			
	2.4	DOCK	ER	49			
		2.4.1	Running Ubuntu Through Cloudmesh and Docker 🖓 🛛	49			
			2.4.1.1 Installing Docker with Chocolatey	49			
			2.4.1.2 Installing Cloudmesh with Git Bash	49			
			2.4.1.3 Running Ubuntu with Docker	50			
			2.4.1.4 Running Ubuntu Remotely on Rivanna	51			
			2.4.1.5 Links	52			
z	LINI	IX		52			
•	3 1	Cloud	nudmesh Project Ramdisk 🔿				
	0.1	3.1.1	Ubuntu	53			
	3.2	USEFU		53			
	0.1	3.2.1		53			
		0.2.12	3.2.1.1 Introduction to Linux	54			
			3.2.1.2 Github	54			
		3.2.2	Install pandoc from source 🖸	54			
		3.2.3	Emacs 🖓	54			
			3.2.3.1 Downloading and Installing	54			
			3.2.3.2 Editing.zprofile and .zshrc for the REU	54			
4	ΡΥΤ	HON		55			
	4.1	Pytho	n Data Management 🗘	55			
		4.1.1	Lists	55			
			4.1.1.1 Construction	56			
			4.1.1.2 Accessing Values	56			
			4.1.1.3 Updating Values	56			
			4.1.1.4 Python Built-In Methods	56			

	4.1.2	Dictionaries
		4.1.2.1 Construction
		4.1.2.2 Accessing Values
		4.1.2.3 Updating Values
		4.1.2.4 Python Built-In Methods
	4.1.3	CSV Files
		4.1.3.1 Installing and Importing
		4.1.3.2 Construction
		4.1.3.3 Accessing Values
		4.1.3.4 Examples
	4.1.4	Links
		4.1.4.1 Lists
		4.1.4.2 Dictionaries
		4.1.4.3 CSV Files
4.2	DATA M	IANAGEMENT MODULES
	4.2.1	glob 🖓
		4.2.1.1 Glob with asterisk
		4.2.1.2 Single Character Wildcard (?)
		4.2.1.3 Escape Characters
		4.2.1.4 Subdirectories
		4.2.1.5 Links
	4.2.2	Mmap 🖓
		4.2.2.1 Reading
		4.2.2.2 Writing
		4.2.2.3 Links
	4.2.3	Pickle 🗘
		4.2.3.1 Encoding Data
		4.2.3.2 Decoding Data
		4.2.3.3 Links
	4.2.4	Shelve 🗘
		4.2.4.1 Creating a New Shelf
		4.2.4.2 Accessing a Shelf
		4.2.4.3 Making Shelf Read-Only
		4.2.4.4 Modifying Shelves
		4.2.4.5 Closing Shelves
		4.2.4.6 Links
	4.2.5	Yaml Database (yamldb) 🖓 72
		4.2.5.1 Installing and importing

		4.2.5.2	Using ya	mldb	7	2
		4.2.5.3	Accessin	g Values	7	3
		4.2.5.4	Save, Lo	ad, and Search	7	3
	4.2.6	Request	s with Pyt	hon 🖓		4
		4.2.6.1	Installin	g and Importing	7	4
		4.2.6.2	Using Re	equests	7	4
		4.2.6.3	Links .		7	5
	4.2.7	FastAPI	••••		7	5
		4.2.7.1	FastAPI	nstall	7	5
		4.2.7.2	FastAPI	Quickstart	7	6
		4.2.7.3	Path .		7	7
		4	.2.7.3.1	Path Arguments	7	7
		4	.2.7.3.2	Query and Search Parameters	7	8
		4.2.7.4	Running	Through Git bash	7	9
		4.2.7.5	Integrati	on with pedantic	7	9
		4.2.7.6	Running	the cc FastAPI service	7	9
		4.2.7.7	Running	through Docker	8	0
		4.2.7.8	Testing		8	1
		4	.2.7.8.1	Asynchronous Testing	8	1
		4.2.7.9	Links .		8	2
	4.2.8	Queue 🤇	••••		8	2
		4.2.8.1	FIFO Qu	eue	8	2
		4.2.8.2	LIFO Qu	eue	8	3
		4.2.8.3	Priority	Queue	8	3
4.3	CHART	<u>-</u> S			8	4
	4.3.1	Python	Graphics I	ntroduction ,	8	4
	4.3.2	Matplot	lib 🗘		8	5
		4.3.2.1	Installat	ion	8	5
		4.3.2.2	Import S	itatements	8	6
		4.3.2.3	Bar Cha	t	8	6
		4.3.2.4	Line Cha	rt	8	7
		4.3.2.5	Pie Char	t	8	8
		4.3.2.6	Contour	Plot	8	9
		4.3.2.7	Annotat	ons	9	0
		4	1.3.2.7.1	Titles	9	0
		4	1.3.2.7.2	XY Labels	9	0
		4	1.3.2.7.3	Legend	9	1
		4	1.3.2.7.4	Rotating Ticks	9	1

		4.3.2.8	Export
		4.	3.2.8.1 Display
		4.3.2.9	Links
	4.3.3	Seaborn	9
		4.3.3.1	Installation
		4.3.3.2	Import Statements 93
		4.3.3.3	Relational Plots 93
		4.3.3.4	Distribution Plots
		4.3.3.5	Categorical Plots
		4.3.3.6	Regression Plots 96
		4.3.3.7	Saving Figures
		4.3.3.8	Links
	4.3.4	Bokeh ᄌ	97
		4.3.4.1	Installation
		4.3.4.2	Import Statements
		4.3.4.3	Bokeh Plotting
		4.3.4.4	Annotations
		4.3.4.5	Dimensions and Color
		4.3.4.6	Scatter Plot
		4.3.4.7	Line Plots
		4.3.4.8	Bar Chart
		4.3.4.9	Saving Figures
		4.	3.4.9.1 Saving Figures as PNG
		4.3.4.10	Links
	4.3.5	Pandas G	Graphics 🖓
		4.3.5.1	Installation
		4.3.5.2	Import Statements
		4.3.5.3	Bar Chart
		4.3.5.4	Line Chart
		4.3.5.5	Pie Chart
		4.3.5.6	Exporting
		4.3.5.7	Links
4.4	GRAPH	IS WITH P	YTHON
	4.4.1	Network	x 🗘
		4.4.1.1	Installing and Importing 107
		4.4.1.2	Creating a graph
		4.4.1.3	Accessing
		4.4.1.4	Removing nodes

		4.4.1.5	Colors a	nd Labels
	4.4.2	Graphviz	z Ç	
		4.4.2.1	Installat	ion and Importing
		4	.4.2.1.1	Windows
		4	.4.2.1.2	Mac
		4	.4.2.1.3	Linux
		4.4.2.2	Creating	the graph, adding nodes, and adding edges
		4.4.2.3	Subgrap	bhs
		4.4.2.4	Data Str	uctures
		4.4.2.5	Colors a	nd Labels
		4.4.2.6	Links .	
4.5	SELEC	TED CLOU	JDMESH T	OPICS
	4.5.1	cms sys	command	l generate 🔿
		4.5.1.1	Creating	CLI commands using the cloudmesh command 116
		4	.5.1.1.1	Example of the CLI Creation
		4	.5.1.1.2	Example of CLI meshing with a python script
	4.5.2	Cloudme	esh StopV	/atch 🗘
	4.5.3	How to S	Set Up Bro	owser Defaults on Windows 🖓
		4.5.3.1	Changir	g Default Browser
		4.5.3.2	Changir	g Default Search Engine 119
		4	.5.3.2.1	Microsoft Edge
		4	.5.3.2.2	Google Chrome
		4	.5.3.2.3	Firefox
		4	.5.3.2.4	Opera
	4.5.4	CLOUDM	1ESH WOF	RKFLOW
		4.5.4.1	Docume	entation 🗘
		4.5.4.2	Cloudm	esh-cc Workflow 🔿
		4.5.4.3	Queue [Data Structure 🗘
		4	.5.4.3.1	Location
		4	.5.4.3.2	Installation
		4	.5.4.3.3	Contents
		4.5.4.4	Databas	es Program 🖓
		4	.5.4.4.1	Location
		4	.5.4.4.2	Contents
		4	.5.4.4.3	Initialization
		4	.5.4.4.4	Usage
		4	.5.4.4.5	Extension

			4.5.4.5	Running	Tensorflow on Rivanna 🖓
			4	.5.4.5.1	Table of Contents 124
			4	.5.4.5.2	Activating Rivanna
			4	.5.4.5.3	Installing Tensorflow Using Conda
			4	.5.4.5.4	Loading and Running Singularity
			4	.5.4.5.5	Copying Tensorflow Container Image
			4	.5.4.5.6	Running the Singularity Shell
			4	.5.4.5.7	Running Slurm Jobs
			4	.5.4.5.8	Examples from GitHub
			4	.5.4.5.9	Links
5	INTE	RODUCT			NING 128
•	5.1	AI 🖸 .			
		5.1.1	Analytics	services	
		5.1.2	Reports		
		5.1.3	Modules		
		5.1.4	Course n	naterial .	
			5.1.4.1	Introduc	tion to AI-Driven Digital Transformation
		5.1.5	Publistai	ons	
	5.2	OVERV	′IEW		
		5.2.1	2022 Lec	ture on Al-	First Deep Learning 🔿
		5.2.2	Overviev	v to Al-Driv	ven Digital Transformation 🖓
			5.2.2.1	Big Data	Applications and Analytics (A)
			5.2.2.2	Big Data	Applications and Analytics (B)
			5.2.2.3	Big Data	Applications and Analytics (C)
			5.2.2.4	Big Data	Applications and Analytics (D)
			5.2.2.5	Big Data	Applications and Analytics (E)
			5.2.2.6	Big Data	Applications and Analytics (F)
			5.2.2.7	Big Data	Applications and Analytics (G)
			5.2.2.8	Big Data	Applications and Analytics (H)
		5.2.3	Overviev	v Al-First E	ngineering Cybertraining 🖓
			5.2.3.1	Assignm	ents
			5.2.3.2	Introduc	tion
			5.2.3.3	Deep Lea	rning Examples, 1
			5.2.3.4	Deep Lea	rning Examples, 2 plus Components
			5.2.3.5	Deep Lea	rning Networks plus Overview of Optimization
			5.2.3.6	Deep Lea	rning and AI Examples in Health and Medicine
			5.2.3.7	Deep Lea	rning and AI Examples

		5.2.3.8		134
		5.2.3.9	GitHub for the Class project	134
		5.2.3.10		135
		5.2.3.11	Practical Issues in Deep Learning for Earthquakes	135
		5.2.3.12	Practical Issues in Deep Learning for Earthquakes	135
5.3	APPLIC	CATIONS		135
	5.3.1	Introduc	tion to Al in Health and Medicine 🖓	135
		5.3.1.1		135
		5.3.1.2	Diagnostics (B)	136
		5.3.1.3	Examples (C)	136
		5.3.1.4	Impact of Covid-19 (D)	137
		5.3.1.5	Covid-19 and Recession (E)	137
		5.3.1.6	Tackling Covid-19 (F)	137
		5.3.1.7	Data and Computational Science and Covid-19 (G)	138
		5.3.1.8	Screening Drug and Candidates (H)	138
		5.3.1.9	Areas for Covid19 Study and Pandemics as Complex Systems (I)	139
	5.3.2	Mobility	(Industry) 🗘	139
		5.3.2.1	Introduction (A)	139
		5.3.2.2	Self Driving AI (B)	140
		5.3.2.3	General Motors View (C)	140
		5.3.2.4	Self Driving Snippets (D)	140
		5.3.2.5	Electrical Power (E)	141
		5.3.2.6	Energy (A)	141
		5.3.2.7	Clean Energy startups from Bill Gates (B)	142
		5.3.2.8	Space (C)	142
	5.3.3	Al In Ban	king 🗘	142
		5.3.3.1	The Transition of legacy Banks (A)	142
		5.3.3.2	FinTech (B)	143
		5.3.3.3	Neobanks (C)	143
		5.3.3.4	The System (D)	143
		5.3.3.5	Examples (E)	143
		5.3.3.6	Banking as a Service (E)	144
	5.3.4	Transpor	rtation Systems 🗘	144
		5.3.4.1	Introduction (A)	144
		5.3.4.2	Components of a Ride-Hailing System (B)	144
		5.3.4.3	Different AI Approaches in Ride-Hailing (C)	145
	5.3.5	Commer		145
		5.3.5.1	The Old way of doing things (A)	145

		5.3.5.2 Al in Retail (B)
		5.3.5.3 The Revolution that is Amazon (C)
		5.3.5.4 DLMalls e-commerce (D)
		5.3.5.5 Recommender Engines, Digital media (E)
5.4	CLOUD	COMPUTING
	5.4.1	Cloud Computing 🖓
		5.4.1.1 Defining the Cloud
		5.4.1.1.1 Definition
		5.4.1.1.2 Service-oriented architectures
		5.4.1.1.3 Market Share
		5.4.1.2 Virtualization
		5.4.1.3 Cloud Infrastructure
		5.4.1.4 Cloud Software
		5.4.1.5 Cloud Applications
		5.4.1.6 Parallel Computing Analogies
		5.4.1.6.1 Parallel Computing in pictures
		5.4.1.6.2 Real Parallel Computing
		5.4.1.7 Storage
		5.4.1.8 HPC and Clouds
		5.4.1.9 Comparison of Data Analytics with Simulation
		5.4.1.10 The Future
5.5	COLAB	
	5.5.1	Google Colab 🗘
	5.5.2	Python On Colab 🗘
		5.5.2.1 Python Exercise on Google Colab
		5.5.2.2 Simple For Loop
		5.5.2.3 List
		5.5.2.3.1 Retrieving an Element
		5.5.2.3.2 Append New Values
		5.5.2.3.3 Remove an Element
		5.5.2.4 Dictionary
		5.5.2.4.1 Retrieving an Item by Key
		5.5.2.4.2 Append New Item with Key
		5.5.2.4.3 Delete an Item with Key
		5.5.2.5 Comparators
		5.5.2.6 Arithmetic
		5.5.2.7 Numpy
		5.5.2.7.1 Create a Random Numpy Array

	55272	Reshape Numpy Array 154
	55273	Manipulate Array Elements 154
553	Deen Learning Co	lah Examples 🕥 154
0.0.0	5531 Distribu	ited Training for MNIST
	55311	Pre-requisites 155
	5532 Sample	MIP + I STM with Tensorflow Keras
	5 5 3 2 1	Import Libraries 155
	55322	Download Data and Pre-Process
	55323	Define Model 156
	55324	Train 158
	55325	Test 158
	55326	References 159
	5533 MIP+I	STM with MNIST on Google Colab 159
	55331	Pre-requisites 160
	5.5.3.3.2	Sample MI P + I STM with Tensorflow Keras 160
	5.5.3.3.3	Import Libraries
	5.5.3.3.4	Download Data and Pre-Process
	5.5.3.3.5	Define Model
	5.5.3.3.6	Train
	5.5.3.3.7	Test
	5.5.3.3.8	References 163
	5.5.3.4 MNIST	Classification on Google Colab
	5.5.3.4.1	Import Libraries
	5.5.3.4.2	Warm Up Exercise
	5.5.3.4.3	Pre-process data
	5.5.3.4.4	Identify Number of Classes
	5.5.3.4.5	Image Reshaping
	5.5.3.4.6	Resize and Normalize
	5.5.3.4.7	Create a Keras Model
	5.5.3.4.8	Compile and Train
	5.5.3.4.9	Testing
	5.5.3.4.10	Final Note
	5.5.3.4.11	Assignments
	5.5.3.4.12	References
	5.5.3.5 MNIST	With PyTorch 167
	5.5.3.5.1	Import Libraries
	5.5.3.5.2	Pre-Process Data
	5.5.3.5.3	Define Network

5.5.3.5.4	Define Loss Function and Optimizer	69
5.5.3.5.5	Train	69
5.5.3.5.6	Model Evaluation	70
5.5.3.5.7	References	71
5.5.3.6 MNIST-A	AutoEncoder Classification on Google Colab 1	71
5.5.3.6.1	Prerequisites	71
5.5.3.6.2	Import Libraries	71
5.5.3.6.3	Download Data and Pre-Process	71
5.5.3.6.4	Define Model	72
5.5.3.6.5	Train	74
5.5.3.6.6	Test	74
5.5.3.6.7	Visualize	75
5.5.3.7 MNIST-C	CNN Classification on Google Colab 1	75
5.5.3.7.1	Prerequisites	75
5.5.3.7.2	Import Libraries	75
5.5.3.7.3	Download Data and Pre-Process 1	76
5.5.3.7.4	Define Model	76
5.5.3.7.5	Train	78
5.5.3.7.6	Test	78
5.5.3.8 MNIST-L	STM Classification on Google Colab 1	78
5.5.3.8.1	Pre-requisites	78
5.5.3.8.2	Sample LSTM with Tensorflow Keras 1	78
5.5.3.8.3	Import Libraries	79
5.5.3.8.4	Download Data and Pre-Process 1	79
5.5.3.8.5	Define Model	80
5.5.3.8.6	Train	80
5.5.3.8.7	Test	81
5.5.3.8.8	References	81
5.5.3.9 MNIST-M	ILP Classification on Google Colab 1	82
5.5.3.9.1	Pre-requisites	82
5.5.3.9.2	Sample MLP with Tensorflow Keras 1	82
5.5.3.9.3	References	85
5.5.3.10 MNIST-R	RMM Classification on Google Colab 1	85
5.5.3.10.1	Prerequisites	86
5.5.3.10.2	Import Libraries	86
5.5.3.10.3	Download Data and Pre-Process 1	86
5.5.3.10.4	Define Model	87
5.5.3.10.5	Train	88

			5.5.3.10.6 Test	8
			5.5.3.10.7 References	9
	5.6	NLP .		9
		5.6.1	AWS Translate Service 🗘	9
			5.6.1.1 Step 1: Creating a new iam user account on aws	9
			5.6.1.1.1 Step 2: Creating a access key ID and secret ID	D
		5.6.2	Azure Translate 🖓	3
			5.6.2.1 Installing and Starting Azure Translate through the command line 19	5
			5.6.2.1.1 Step 2: installing using Homebrew	5
		5.6.3	Google Translation Service 🗘	7
		5.6.4	Implementation of A Hybrid Cloud natural Language Example 🗘	3
			5.6.4.1 How to Implement using Command Line Interface and The	
			Cloudmesh Catalog (AWS Provider)	3
			5.6.4.2 How to Implement using Command Line Interface and The	
			Cloudmesh Catalog (Google Provider)	4
			5.6.4.3 heterogenous cloudmesh nlp service	5
	5.7	TIMES	ERIES	7
		5.7.1	DL Timeseries 🗘	7
6	MNIS	ST	203	8
	6.1	Setting	Parameters while Running mnist Jobs 🗘	8
		6.1.1	Having Cloudmesh Installed	8
		6.1.2	Installing the reu2022 folder	8
		6.1.3	Setting the user, host parameters	8
		6.1.4	Setting the cpu and gpu parameters	9
	6.2	- ···		
		Setting	Parameters while Running mnist Jobs 🗘	D
		Setting 6.2.1	; Parameters while Running mnist Jobs 🖓	0 0
		Setting 6.2.1 6.2.2	Rerameters while Running mnist Jobs 🖓	0 0 0
		Setting 6.2.1 6.2.2 6.2.3	g Parameters while Running mnist Jobs () 210 Table of Contents 210 Having Cloudmesh Installed 210 Installing the reu2022 folder 210	0 0 0 0
		Setting 6.2.1 6.2.2 6.2.3 6.2.4	g Parameters while Running mnist Jobs () 210 Table of Contents 210 Having Cloudmesh Installed 210 Installing the reu2022 folder 210 Setting the user, host parameters 210	0 0 0 0
		Setting 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	g Parameters while Running mnist Jobs () 210 Table of Contents 210 Having Cloudmesh Installed 210 Installing the reu2022 folder 210 Setting the user, host parameters 211 Setting the cpu and gpu parameters 211	0 0 0 1 1
		Setting 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6	g Parameters while Running mnist Jobs () 210 Table of Contents 210 Having Cloudmesh Installed 210 Installing the reu2022 folder 210 Setting the user, host parameters 211 Setting the cpu and gpu parameters 211 Running the mnist Files 212	0 0 0 1 1 2
	6.3	Setting 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 MNIST	g Parameters while Running mnist Jobs 210 Table of Contents 210 Having Cloudmesh Installed 210 Installing the reu2022 folder 210 Setting the user, host parameters 211 Setting the cpu and gpu parameters 211 Running the mnist Files 212 tensorflow rivanna 212	0 0 0 1 1 2 2
	6.3 6.4	Setting 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 MNIST MNIST	g Parameters while Running mnist Jobs 210 Table of Contents 210 Having Cloudmesh Installed 210 Installing the reu2022 folder 210 Setting the user, host parameters 211 Setting the cpu and gpu parameters 211 Running the mnist Files 211 tensorflow rivanna 212 pyTorch Rivanna 212	0 0 0 1 2 2
7	6.3 6.4	Setting 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 MNIST MNIST	g Parameters while Running mnist Jobs () 210 Table of Contents 210 Having Cloudmesh Installed 210 Installing the reu2022 folder 210 Setting the user, host parameters 211 Setting the cpu and gpu parameters 211 Running the mnist Files 212 tensorflow rivanna () 212 pyTorch Rivanna () 212	0 0 0 1 2 2 2
7	6.3 6.4 BIOS	Setting 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 MNIST MNIST	g Parameters while Running mnist Jobs 210 Table of Contents 210 Having Cloudmesh Installed 210 Installing the reu2022 folder 210 Setting the user, host parameters 211 Setting the cpu and gpu parameters 211 Running the mnist Files 212 tensorflow rivanna 212 pyTorch Rivanna 213	0 0 0 1 2 2 2 2
7	6.3 6.4 BIOS 7.1	Setting 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 MNIST MNIST Bios 7.1.1	g Parameters while Running mnist Jobs () 210 Table of Contents 210 Having Cloudmesh Installed 210 Installing the reu2022 folder 210 Setting the user, host parameters 211 Setting the cpu and gpu parameters 211 Running the mnist Files 211 tensorflow rivanna () 212 yTorch Rivanna () 212 Alex Beck 211	0 0 0 1 1 2 2 2 2 3

RENCES					
7.1.9	Jake Kolessar	216			
7.1.8	Robert Knuuti	215			
7.1.7	Thomas Butler	215			
7.1.6	Abdulbaqiy Diyaolu	215			
7.1.5	Eric He	214			
7.1.4	Jacques Fleischer	214			
7.1.3	Jackson Miskill	213			
7.1.2	Alison Lu	213			

8 **REFERENCES**

1 PREFACE

1.1 REU 2022 🖓

1.1.1 Overview

Information technology is playing a dramatically increasing role in society, industry, and research. This includes design and use of large databases, simulations and artificial intelligence applications hosted on clouds and supercomputers with convergent technologies. Correspondingly, there is an increasing need for research workforce job skills in these and related areas. This project takes course material on this cyberinfrastructure and adapts it for training with an emphasis on the needs of under-represented communities. The techniques of the successful open-source software movement are used to create sustainable communities around the course curriculum and software. The project is creating new technologies to enable this for today's generation of students. Skills in core cloud computing, big data, supercomputing and artificial intelligence are exemplified by applications in the life science and nanotechnology areas. This project enables the future research workforce to contribute effectively using advanced cyberinfrastructure, promoting the progress of science and advancing the national health, prosperity, and welfare, which serves the national interest, as stated by NSF's mission.

The future economic progress and research leadership of the U.S. is dependent on having a research workforce that is capable of making use of advanced cyberinfrastructure (CI) resources as articulated by the National Strategic Computing Initiative (NSCI). This requires a curriculum that changes and integrates modern concepts and practices for the new generation of students aiming at a "data-enabled computational science and engineering" expertise. This project takes what Indiana University has learned from a brand new four-year undergraduate engineering curriculum designed ab initio and taught so far to its first two undergraduate classes, and invests it into developing active training modules. The innovative curriculum integrates big data, simulations, clouds and high performance

computing systems presented in a uniform framework. The course material is customized for communities of cyberinfrastructure researchers nucleated, built, and sustained via the dynamic use of GitHub and enhanced by innovative tools to build a novel learning management system optimized for cyberinfrastructure-intensive classes. The project modules include Cloud Computing, Big Data Applications and Analytics, Networking, High-Performance Computing, Artificial Intelligence/Machine Learning, and Information Visualization. There are residential sessions, with a call for participants, and purely online courses and these have both "teach the student" and "teach the teacher" modes; the latter enables easy spread of the classes. Hands-on learning with research projects built around the class material is fully supported. The project offers CyberTraining with all the popular approaches used by the Apache Software Foundation, including Meetups and Hackathons. Modules for domain scientists and engineers, e.g., the cyberinfrastructure users that exploit advanced CI methods for research in nanoengineering and bioengineering are included. Both students and teachers contribute to the course improving the text, the software, including a unique set of examples and the project aims to show that one can build both learning and sustainability communities by using the proven techniques of the open source software community. The project uses proactive measures to enhance the involvement of under-represented communities in its activities.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

This grant was started under NSF Award 1829704 and transitioned to the University of Virginia in November 2021 under the NSF award number 2200409 at the Biocomplexity Institute at the University of Virginia. Administrative support was provided by the BII UVA Global Challenges program. For most students, the program lasted from June 2nd, 2022 until July 29th, 2022. One student was funded for an additional month.

1.2 Teaching Material and Course Websites 🖓

Teaching material form previous teaching activities was made available to the students at the beginning of the program. We list here a selection of them. Students were required to find other resources on the internet in case additional material was needed. This served as an exercise to be able to identify relevant information.

Students main goal was to develop new teaching material while at the same time conducting a project making the use of distributed cyberinfrastructure for deep learning simpler. Over time, they contributed to the teaching material.

1.2.1 Books

The following teaching books were used:

- https://cloudmesh-community.github.io/pub/vonLaszewski-python.pdf
- https://cloudmesh-community.github.io/pub/vonLaszewski-python.epub
- https://cloudmesh-community.github.io/pub/vonLaszewski-linux.pdf
- https://cloudmesh-community.github.io/pub/vonLaszewski-linux.epub
- https://cloudmesh.github.io/cloudmesh-mpi/report-mpi.pdf
- https://cloudmesh-community.github.io/pub/vonLaszewski-writing.pdf
- https://cloudmesh-community.github.io/pub/vonLaszewski-communicate.pdf
- https://cloudmesh-community.github.io/pub/vonLaszewski-reu2022.pdf

1.2.2 The repository for our report

The repository managing these proceedings is available at

https://github.com/cybertraining-dsc/reu2022

Code was mainly developed in

- https://github.com/cloudmesh/cloudmesh-mpi
- https://github.com/cloudmesh/cloudmesh-cc

Students maintained furthermore their own repositories which are listed at the end of these proceedings.

1.2.3 Slack

Some private Slacks that are not open to the community to coordinate activities include

- Private Slack for student collaboration
- Private GC4G slack for event scheduling

1.2.4 Asking for technical help

The many UVA technical help ticket systems include

- [ITS Ticket system](https://virginia.edusupportcenter.com/shp/uva/helpcenter}
- Rivanna Ticket System
- BII Ticket system

1.2.5 Rivanna Information

Information about the Rivanna supercomputer with GPUs at University of Virginia are listed next

- Research Computing: https://www.rc.virginia.edu/
- Rivanna Overview: https://www.rc.virginia.edu/userinfo/rivanna/overview/
- Research Computing Support Center: https://www.rc.virginia.edu/support/#office-hours
- access through ssh: https://www.rc.virginia.edu/userinfo/rivanna/login/
- access through Web Browser: https://shibidp.its.virginia.edu/idp/profile/SAML2/Redirect/SSO ?execution=e2s1
- Rivanna Slide Show: https://learning.rc.virginia.edu/notes/rivanna-intro/
- Globus Data Transfer (not using for reu2022) https://www.rc.virginia.edu/userinfo/globus/
- Slurm Job Manager Documentation https://www.rc.virginia.edu/userinfo/rivanna/slurm/
- Rivanna Allocations: https://www.rc.virginia.edu/userinfo/rivanna/allocations/

1.2.6 Git Bash

Students with Windows machines were asked to use GitBash

https://git-scm.com/downloads

1.2.7 PyCharm

Students were asked to use PyCharm for development.

- PyCharm Professional Edition: https://www.jetbrains.com/pycharm/download
- PyCharm Markdown Manual: <https://www.jetbrains.com/help/pycharm/markdown.html>
- (optional) extension makefile: https://plugins.jetbrains.com/plugin/9333-makefile-language
- (optional) rst: https://www.jetbrains.com/help/pycharm/restructured-text.html
- 80 char: https://intellij-support.jetbrains.com/hc/en-us/community/posts/206070859-Howdo-I-enable-the-80-column-guideline-change
- background to white as i can not read white on black when in meetings with me I will not support anyone that has black background: https://www.jetbrains.com/help/pycharm/user-interfacethemes.html use intelliJ Light. After the meeting you can set it to whatever.

1.2.8 Bibliography Management

Bibliography was collected as bibtex and the following tools were recommended

- jabref: https://www.jabref.org/
- bibtex: https://en.wikipedia.org/wiki/BibTeX
- draft bibtex from urls: https://addons.mozilla.org/en-US/firefox/addon/bibitnow/ (has to be modified once copied. Not everything will work.

1.2.9 Administrative Links

The following links are only important for Gregor von Laszewski to enable account management.

- request storage: https://www.rc.virginia.edu/form/storage/
- rivanna partition/account: https://www.rc.virginia.edu/userinfo/rivanna/allocations/
- managing groups: https://mygroups.virginia.edu/

1.3 CONTRIBUTION

1.3.1 Contributors 🔿

The contributor list is likely incomplete if your name is missing, please let us know and we add your name by sending mail to laszewski@gmail.com.

You can also look at the various github monitoring lists to identify contributors.

Please note that a large amount of information is additionally provided in other collections. The collections can be customized with cyberaide-bookmanager written by Gregor von Laszewski (laszewski@gmail.com) for this purpose.

• Gregor von Laszewski, Jacques P. Fleischer, Jackson Miskill, Alison Lu, Alex Beck, AbdulBaqiy Diyaolu, Robert Knuuti

1.3.2 Calender 🔿

- June 2 2022, Program start
- July 28 2022, Program end

1.3.3 Avoid Duplication 🖓

Before you do anything, check first if it is already in one of the books. Evaluate if it needs to be expanded in the book, or if a new section is needed. If a new section is needed, please consult with Gregor and ask for approval. We will then also decide if the chapter will be located in reu2022 or in book (both are repositories).

1.3.4 GitHub Insights 🔿

Contribution will be determined based on review of commits, and lines contributed in such a fashion that the final lines will be considered. For example let us assume you spent significant time on a section that ia a duplication of what others do, we will then delete that sections and you have not achieved a contribution. Thus, please make sure that you contribute valuable things.

Ask if you have an idea and want confirmation.

To see the contributions, you can look at GitHub Insights:

- Project
- Issues
- Pulse
- Contributors
- Traffic

However, note that the true contributions may not be determined form insights as it may include duplication of lines and other information that is not included in GitHub Insights.

1.3.5 Issues 🖓

Cloudmesh contains a convenient program to list all issues of repositories downloaded in the current directory. The command can be installed with

```
$ pip install cloudmesh-git
```

alternatively you can simply install it from source with

```
$ cd cm
$ git clone git@github.com:cloudmesh/cloudmesh-git.git
$ cd cloudmesh-git
$ pip install -e .
$ cd ..
```

To run it cd to the directory where all your git repos are located and say

```
$ cms git issues --repo=. --refresh
```

This will open a Web page that list all issues across all repos in that directory.

In case you like to see all issues only for the REU2022, please check out the GitHub Link.

To get all issues for cloudmesh projects that interest you, you can create an issue list from selected repositories.

For example you can checkout the following

```
$ cd cm
$ cloudmesh-installer get cmd5
$ git clone git@github.com:cloudmesh/yamldb.git
$ git clone git@github.com:cloudmesh/cloudmesh-git.git
$ git clone git@github.com:cloudmesh/cloudmesh-catalog.git
$ git clone git@github.com:cloudmesh/cloudmesh-data.git
$ git clone git@github.com:cloudmesh/cloudmesh-sbatch.git
$ git clone git@github.com:cloudmesh/cloudmesh-mpi.git
$ git clone git@github.com:cloudmesh/cloudmesh-mpi.git
$ git clone git@github.com:cloudmesh/cloudmesh-slurm.git
$ git clone git@github.com:cloudmesh/cloudmesh-pi-burn.git
$ git clone git@github.com:cloudmesh/cloudmesh-pi-burn.git
$ git clone git@github.com:cloudmesh/cloudmesh-pi-cluster.git
$ git clone git@github.com:cloudmesh/cloudmesh-pi-cluster.git
$ git clone git@github.com:cloudmesh-cloudmesh-pi-cluster.git
$ git clone git@github.com:cloudmesh-cloudmesh-pi-cluster.git
$ git clone git@github.com:cloudmesh-community/book.git
$ git clone git@github.com:cloudmesh-community/book.git
$ git clone git@github.com:cybertraining-dsc/reu.git
$ git clone git@github.com:cybertraining-dsc/reu.git
```

To get the list use

```
$ cms git issues --repo=reu --refresh
```

1.3.6 Teamwork 🖓

- Principals of Teamwork
- 1. A team works together
- 2. A team always communicates with each other
- 3. A canceled meeting for a dasy does not mean that the teamwork stops
- 4. If you need help you must ask the team
- 5. If a team member does not want to help you that is not team work
- 6. If you can not keep up with the team members you need to step up
- 7. If you are assigned a task and you can not do it you need to ask for help

- 8. If you spend hours or days on a task that you can not do you need to ask for help
- 9. In case you know you have an issue with a task you need to communicate that early
- 10. In case you need to go on vacation you need to ask for permission and do it 3 weeks before the vacation so that reassignment of tasks is possible.
- 11. In case you do need to go on vacation, you need to provide a concrete plan on (a) how does this work effect the team and how will your work be distributed to the team, (b) what are concrete workhours that you propose to make up the work (c) be aware that any vacation time not only negatively impacts the team time planing, but also your supervisors work
 - (d) plan any additional impact on your work, for example you could have other obligations in unrelated projects.
- 12. A statement such as This was not my task if something is not working clearly shows that the spirit of teamwork is not understood. Instead you should have communicated with the person doing the task and helped complete it.
- 13. A statement such as I am better then the other team members, they slow me down is not in the team spirit. In fact practice shows that in advanced project stages such student do not accelerate as they can not benefit from the team and the team does not like to work with them.
- 14. Research today is always done as team. Not understanding teamwork excludes you from becoming a researcher.

Always ask yourself everyday:

- What have you done to increase teamwork?
- What is a concrete contribution you made for the team?
- Did you help anyone?
- Were you helped by anyone?
- Did you communicate your progress to the team?e

2 DEVELOPMENT ENVIRONMENT

2.1 Install 🖓

- Learn how to set up a python development computer
- · Learn how to install python from python.org

- Learn how to use a python venv
- Learn how to install cloudmesh Shell

In this section, we present an easy-to-follow installation guide for a recent version of python and cloudmesh.

Before you start, please read the entire section and develop a plan for installation.

2.1.1 Windows

The installation of cloudmesh benefits from using Git Bash as it allows us to have a terminal that is similar to that of macOS and Linux.

Hence, before we install python and cloudmesh we install Git Bash.

Furthermore, we provide the option to use chocolatey to install packages in similar fashion as on linus.

2.1.1.1 Git Bash install First, make sure you completely uninstall previous versions of Git Bash. If you do not have it installed, you can skip this step.

Go to Start Menu > Add Or Remove Programs

In the search bar that is located on that page, type Git. Then click on Uninstall and follow the instructions.

To install Git Bash, it is highly recommended to use chocolatey for convenience. If you do not have chocolatey then follow the tutorial at https://chocolatey.org/install. Then run the following command in a Run as Administrator instance of Powershell:

Otherwise, instead of using chocolatey, download Git Bash from the following link:

https://git-scm.com/downloads

Click **Download** for Windows. The download will commence. Please open the file once it is finished downloading. Next, please start the downloaded program and follow the instructions carefully.

- The administration window (UAC Prompt) will appear. Click Yes. It will show you Git's license: a GNU General Public License. Read it and Click Next. To ensure security of the operating system, a UAC prompt allows operating systems, particularly Windows, to prompt for consent or credentials from local administrators before starting a program.
- Click Next to confirm that C:\Program Files\Git is the directory where you want Git to be installed.
- Select the box to create a shortcut icon on the desktop. Click Next to continue with the installation.
- Click Next to accept the default text editor which is vim,
- Replace the default branch name (master) with main ,
- Click Next and check on to run Git from the command line and 3rd party software,
- Click Next and check on to use the OpenSSL library,
- Click Next and check on to Checkout as-is, commit as-is,
- Click Next and check on to use MinTTY,
- Click Next and check on to use the default git pull,
- Click Next and check on to use the Git Credential Manager Core,
- Click Next and check on enable file system caching, and then
- Click Next and check on Enable experiment support for pseudo consoles
- Click Install.

A video tutorial on how to install Git and Git Bash on Windows 10 is located at https://youtu.be/HCotE x_xCfA

A written tutorial on how to install Git and Git Bash on Windows 10 is located at https://cybertraining-dsc.github.io/docs/tutorial/reu/github/git/

2.1.1.2 Python 3.10 install To install Python 3.10 please go to

https://python.org

and download the latest version.

- Click Download . The download will commence. Please open the file once it is finished downloading
- Click the checkbox Add Python 3.10 to PATH
- Click Install Now
- At the end of the installation click the option to Disable path length limit

A video tutorial on how to install Professional PyCharm is located at https://youtu.be/QPESX-VBnEU

A video on how to configure PyCharm with cloudmesh is located at https://youtu.be/eb1IQBx0D50

2.1.1.3 Installing cloudmesh Cloudmesh can be installed in any shell that has python and git access. However, it is convenient to use Git Bash as it simplifies the documentation and allows us to interact with Linux commands with the Windows file system. The installation is done with a Python virtual environment ENV3 using command venv so you do not affect your computer's current python configurations or settings. Here are the steps:

```
$ python -m venv ~/ENV3
$ source ~/ENV3/Scripts/activate
$ cd
$ mkdir cm
$ cd cm
$ pip install pip -U
$ pip install cloudmesh-installer
$ cloudmesh-installer
$ cloudmesh-installer get cmd5
$ cms help
$ touch ~/.bashrc
$ echo "source ~/ENV3/Scripts/activate" >> ~/.bashrc
$ echo "cd ~/cm" >> ~/.bashrc
```

To activate it, start new Git Bash and terminate the first Git Bash window. If you see in the new window (ENV3), continue. Git Bash will initialize the environment.

If you do not want to always start in the directory cm do replace the line in your .bashrc cd cm with cd

2.1.1.4 Uninstall To remove the virtual environment ENV3, use the following command:

```
$ rm -rf ~/ENV3
```

Next, edit the .bashrc and .bash_profile file and delete the lines:

```
$ source ~/ENV3/Scripts/activate
$ cd cm
```

2.1.2 Choco install

There are a number of useful packages that you can install via choco. This includes Visual Code, Pycharm, Emacs, and make. Even Python could be installed with it; however, we have not tested the installation of python via choco, while we have tested the installation of Emacs, Pycharm, and make.

2.1.3 Install Chocolatey

To install, please start a Git Bash terminal as administrator: To do so, press the Windows key and type Powershell. Click Run as Administrator. Click Yes.

2. In PowerShell execute the following command:

```
PS C:\Windows\system32> Set-ExecutionPolicy AllSigned
```

Then type y.

3. Next type in the command (copy and paste to not make a mistake)

4. Wait for the installation to complete; once you see

PS C:\Windows\system32>

with a blinking cursor again, and lines have stopped appearing, then the Chocolatey installation has finished. Type choco and you should see Chocolatey in green text.

Now you can install many programs with choco by launching PowerShell as Administrator or Git Bash.

A list of programs that you can install with choco can be found at:

https://community.chocolatey.org/packages/

2.1.4 Installing Useful Developer Programs

The following useful developer programs can be installed. Select the once you like and install them with the appropriate command

```
$ choco install make -y
$ choco install emacs -y
$ choco install pycharm -y
$ choco install firefox -y
$ choco install vscode -y
$ choco install zoom -y
```

Once the installation completes, your program will be ready for you to use.

2.1.5 Linux

2.1.5.1 Install Python 3.10.5 The installation from source can be done easily as shown next.

```
$ mkdir -p ~/tmp
$ cd ~/tmp
$ wget https://www.python.org/ftp/python/3.10.5/Python-3.10.5.tar.xz
$ tar xvf Python-3.10.5.tar.xz
$ cd Python-3.10.5/
$ ./configure --enable-optimizations
$ make -j $(nproc)
$ sudo make altinstall
$ pip install pip -U
$ python3.10 -V
```

2.1.5.2 Setting up the venv We assume you use bash. Here are the steps to activate the virtual environment and install cloudmesh into the virtual environment called ENV3 which we will use for all of our lessons.

```
$ python3.10 -m venv ~/ENV3
$ source ~/ENV/bin/activate
$ cd
$ mkdir cm
$ cd cm
$ pip install cloudmesh-installer
$ cloudmesh-installer
$ cloudmesh-installer get cmd5
$ cms help
$ touch .bashrc
$ echo "source ~/ENV3/bin/activate" >> .bashrc
$ echo "cd cm" >> .bashrc
$ echo "source ~/ENV3/bin/activate" >> .bash_profile
$ echo "cd cm" >> .bash_profile
```

2.1.5.3 Uninstall To remove your virtual environment, execute the following command:

\$ rm -rf ~/ENV3

Edit the .zshrc and .zprofile file and delete the lines

```
$ source ~/ENV3/bin/activate
$ cd cm
```

2.1.5.4 Update In case you need to update the Python version it is sufficient to follow the instructions provided in the section Install Python 3.10.5, while replacing the version number with the current python release number.

In case you need to create a new virtual ENV3. You can first uninstall it and then reinstall it.

An easy way to do all of this with a command is the following:

```
$ cd ~/cm
$ pip install cloudmesh-installer -U
$ pip install --upgrade pip
$ cloudmesh-installer new ~/ENV3 cmd5 --python=/usr/local/bin/python3.10
$ source ~/ENV3/bin/activate
$ python -V
$ which python
```

2.1.6 macOS

We assume you use ~/zsh which is the default on macOS

2.1.6.1 Xcode Install There are a number of digital tools that are needed before proceeding further. These tools include git, make, and a c compiler. All of these tools can be downloaded at Xcode, which is an IDE App on the Apple App Store that includes all of these necessary elements.

Once installed, there is one simple command line command to run:

```
$ xcode-select --install
```

This will install all the necessary command line tools. Xcode can be used as an IDE, but for the most part will not be used outside the command line tools it provides.

2.1.6.2 Cloudmesh

2.1.6.2.1 Install Before any of the following, make sure to download the current version of python. At the time of this writing, it is python 3.10.5.

Second, execute the following commands in your terminal. Make sure to do this in order.

```
$ cd
$ python3.10 -m venv ~/ENV3
$ source ~/ENV3/bin/activate
$ pip install pip -U
```

```
$ mkdir cm
$ cd cm
$ pip install cloudmesh-installer
$ cloudmesh-installer get cmd5
$ cms help
$ echo "source ~/ENV3/bin/activate" >> .zshrc
$ echo "cd cm" >> .zshrc
$ echo "source ~/ENV3/bin/activate" >> .zprofile
$ echo "cd cm" >> .zprofile
```

It creates the virtual environment, a directory called ~/cm, then installs cloudmesh. Following this, it sets the macOS startup commands .zshrc and .zprofile to start up in the virtual environment ~/ENV3.

2.1.6.2.2 Uninstall To uninstall the virtual environment, execute the following command:

\$ rm -rf ~/ENV3

2.1.6.3 Update Before starting this process, ensure that python is in the correct path. We will test this in the terminal.

To do so remove the existing ENV3 first and start a new terminal in which you will be working.

\$ rm -rf ~/ENV3

Start the new terminal and execute the commands to verify if you have the right updated version of python.

```
$ which python3.10
$ where python3.10
$ python3.10 -V
```

Now execute:

```
$ cd ~/cm
$ python3.10 -m venv ~/ENV3
$ source ~/ENV3/bin/activate
$ pip install pip -U
$ pip install cloudmesh-installer
$ cloudmesh-installer get cmd5
$ cms help
```

As ~/zsh is already configured previously, we do not have to set it up again.

2.1.6.4 Homebrew install Homebrew is a package management software. The Homebrew command is called brew. It is used to install Linux packages on macOS. Installing brew is simple.

- First, make sure the computer that is downloading Homebrew is up-to-date with the latest software for its OS.
- Second, ensure that xcode has been installed. xcode can be installed from the Apple App Store.
- Third, in the terminal, write out:

\$ xcode-select --install

This installs xcode command line tools.

• Fourth, run the following command in the terminal:

- Fifth, enter the administrator password into the desired location.
- It may take a moment for the software to install, but it will eventually say Installation successful! in the terminal. After that, Homebrew is installed onto the device.

After the user has correctly installed Homebrew, it is simple to install packages directly to the operating system:

\$ brew install [package name]

2.2 WINDOWS

2.2.1 Configuring Windows for Research 🖓

Unlike Linux and macOS, Windows runs on a completely different OS. Many coding environments are adapted to Linux, so Windows users must properly configure their machine to prepare it for a project. This is of special importance when working in environments supporting distributed cyberinfrastructure. Here in many cases Linux is required.

2.2.1.1 Setting Up the Python Environment Often you need a specific version of Python. If in doubt, please install the newest one. At time of writing this document it is Python 3.10.5.

Please download and install it from python.org. We recommend that you uninstall Anaconda if you used that before and use the verison from python.org instead.. Development is easier when using a native Python installation instead of anaconda/conda.

To uninstall anaconda, press the Windows key and type "Add or remove programs". Then, press Enter and search for conda in the "Search this list" box. Remove everything related to anaconda. Note that anaconda may have set some environment variables or added configuration scripts to your .bashrc files in case you use gitbash. Please, remove them and make sure your Python version from python.org works as expected.

To code in Python, we recommend using PyCharm and not VSCode.

Pycharm and Git Bash can be installed with the instructions found in Install.

Installation may be simplified while using chocolatey.

This includes

- gitbash
- pycharm
- emacs
- docker

Before installing docker however you have to set up the appropriate hypervisor at boot time. PLease let us know how you set them for your machine, so we can add some information here. You will likely have to research it.

Please also know that you MUST uninstall virtualbox before you install docker, as old versions of virtualbox are incompatible with docker and it is just easier to uninstall virtualbox and reinstall it.

Next we summarize the installations using chocolatey.

Before installing anything, we recommend that you read the entire section. Especially when installing docker and if you do not have a brand new computer.

2.2.1.2 Install Chocolatey To install chocolatey, follow the tutorial at https://github.com/cybertrai ning-dsc/cybertraining-dsc.github.io/blob/main/content/en/docs/tutorial/reu/chocolatey/index. md

2.2.1.3 Install Git Bash Git Bash must be installed with specific configurations, as the discrepancy between Windows and other operating systems can cause errors during runtime, if not properly configured. If Git Bash is already installed, uninstall it by pressing the Windows key and typing Add or remove programs (and press Enter). Then locate and uninstall Git Bash.

To install Git Bash with chocolatey, issue the following command:

The /NoAutoCrlf sets it so that the files are not downloaded via git with Windows line endings. If it were downloaded with such line endings, then it would cause programming bugs. Programmers should Commit As-Is to avoid conflicts.

2.2.1.4 Install PyCharm, emacs, and Docker Uninstall PyCharm Community version if already installed on the computer by pressing the Windows key and typing Add or remove programs (and press Enter). Then locate and uninstall PyCharm.

The following command installs PyCharm Professional, among other necessary development programs. To install these programs in an easy manner, issue the following command (you must have chocolatey installed):

\$ choco install pycharm emacs docker-desktop -y

PyCharm is advantageous over other IDEs such as VSCode because students receive the professional version of PyCharm for free. Furthermore, PyCharm offers robust features such as Refactor and Inspect Code.

A guide to activating PyCharm with a free professional license is available at https://youtu.be/QPESX-VBnEU

2.2.1.5 Configure PyCharm

2.2.1.5.1 Set hard wrap Press Ctrl + Alt + S in PyCharm and expand the Editor menu on the left-hand side. Then, click on Code Style and enter 79 in the Hard wrap at: box. Also, check the Wrap on typing checkbox.

This is done so that the text in files is uniformly indented at 79 columns.

2.2.1.5.2 Makefile Tab configuration and formatting To change what the Tab key does in a Makefile, open a Makefile in PyCharm and click on Tab in the bottom right of the PyCharm interface. If you cannot find the Tab button, then click on View in the top-right, go to Appearance, and make sure Status Bar is checked.

After clicking the Tab button in the bottom-right, click on Configure Indents for Makefile... Tab size should be 4. If PyCharm fails to render your Makefile correctly, right-click on the Makefile in your open files tabs and click Override File Type. If you cannot find Makefile in the list, you must install the Makefile Language plugin for PyCharm.

2.2.1.6 Preparing for Virtualization

2.2.1.6.1 Docker To enable virtualization for Docker on Windows machines, some preparations must be made. First, if the user has VirtualBox installed it is suggested that they uninstall it and reinstall later if necessary. Some older versions of VirtualBox do not support other virtual images like Windows Subsystem for Linux (WSL).

Next, the BIOS settings must be changed to enable virtualization. To do this, search Advanced startup in the Windows Search Bar and click Restart now. Click Troubleshoot and Advanced startup options and then UEFI Firmware Settings to get into the BIOS. NOTE: These are not exhaustive instructions because computer brands and hardware differ vastly. The main objective is to get into the BIOS and search for any Virtualization or Hyper V options in Windows BIOS configuration. For example, Lenovo brand laptops have a Configure tab in the BIOS and the virtualization settings must be enabled under that menu. Then, the user must exit the BIOS while saving changes.

Better documentation on enabling virtualization, which is recommended by Docker and created by Berkeley, is located at https://bce.berkeley.edu/enabling-virtualization-in-your-pc-bios.html

Lastly, check Windows features with Turn Windows features on or off. For Docker, Hyper-V and Containers must be enabled.

2.2.1.6.2 WSL WSL is a Linux virtual image designed for Windows. WSL 2 is typically used as opposed to WSL 1. To install, type this into administrative PowerShell:

PS> wsl --install

To install a particular distribution, use wsl --install -d <DistroName> instead. The available distributions can be found with

PS> wsl --list --online

After WSL is installed, it can be accessed by typing wsl in Powershell. More documentation can be found in the Microsoft Official Documentation.

Directories in WSL

WSL creates a Linux environment in your Windows directory. To access your directories with WSL, a special syntax is used. For example, your home directory, typically C:\Users\USERNAME and abbreviated to ~ is the following with WSL: /mnt/c/Users/USERNAME/. So to change directories to the Desktop in WSL, use this command:

\$ cd /mnt/c/Users/USERNAME/Desktop

where USERANME is to be replaced with the name of the user.

2.2.2 Using Git Bash on Windows 🖓

Git Bash is the terminal of choice for the Windows operating system. However, it must be properly configured for an optimal Python development experience; for example, Pseudo Console Support must be enabled.

First, uninstall Git Bash, if already installed.

If you installed Git with choco , then do choco uninstall git and choco uninstall git.install .

If you did not install Git with choco and you instead used the installer wizard from the Git website, then press the Windows key, searching for Add or remove programs, searching for Git, clicking on it, then clicking Uninstall and completing the uninstallation wizard.

Then install Git Bash in a Run as Administrator instance of Powershell by executing the choco command:

If you do not have chocolatey then follow the tutorial at https://chocolatey.org/install and then run the aforementioned choco command.

For good measure, execute the following in Git Bash to enforce LF line endings:

\$ git config --global core.autocrlf false

Also, generate an ssh-key:

```
$ ssh-keygen
# press enter to save to default location
# create a strong memorable password and confirm the password
```

The following is also an ideal ~/.bashrc file to have for cloudmesh development on Windows (if you do not have ENV3 Python virtual environment or cm dir, then do python -m venv ~/ENV3 and

mkdir ~/cm). You can create this ~/.bashrc file by saying nano ~/.bashrc in Git Bash, copying the text, and then pasting the text with keyboard shortcut Shift + Insert . Then say Ctrl + X , y and Enter , and then Enter . Then restart Git Bash. An error regarding bash profile after first relaunching Git Bash after this created file is expected.

```
env=~/.ssh/agent.env
agent_load_env () { test -f "$env" && . "$env" >| /dev/null ; }
agent_start () {
    (umask 077; ssh-agent >| "$env")
    . "$env" >| /dev/null ; }
agent_load_env
# agent_run_state: 0=agent running w/ key; 1=agent w/o key; 2=agent not running
agent_run_state=$(ssh-add -l >| /dev/null 2>&1; echo $?)
if [ ! "$SSH_AUTH_SOCK" ] || [ $agent_run_state = 2 ]; then
    agent_start
    ssh-add
elif [ "$SSH_AUTH_SOCK" ] && [ $agent_run_state = 1 ]; then
    ssh-add
fi
unset env
source ~/ENV3/Scripts/activate
cd ~/cm
```

2.2.2.1 Troubleshooting If an already installed message appears when trying to use choco to install Git Bash, such as

```
git.install v2.33.0.2 already installed.
Use --force to reinstall, specify a version to install, or try upgrade.
```

then try choco uninstall git. Then rerun the previously listed choco install command. If that does not work, consider the --force parameter mentioned in the warning message.

2.2.3 How to Auto-launch SSH Agent on Windows 🔿

Copy the following code:

```
env=~/.ssh/agent.env
agent_load_env () { test -f "$env" && . "$env" >| /dev/null ; }
agent_start () {
    (umask 077; ssh-agent >| "$env")
    . "$env" >| /dev/null ; }
agent_load_env
# agent_run_state: 0=agent running w/ key; 1=agent w/o key; 2=agent not running
agent_run_state=$(ssh-add -l >| /dev/null 2>&1; echo $?)
if [ ! "$SSH_AUTH_SOCK" ] || [ $agent_run_state = 2 ]; then
    agent_start
    ssh-add
elif [ "$SSH_AUTH_SOCK" ] && [ $agent_run_state = 1 ]; then
    ssh-add
fi
unset env
alias emacs="C:/ProgramData/chocolatey/bin/emacs.exe"
alias tree="cmd //c tree.com //a //f"
source ~/ENV3/Scripts/activate
cd ~/cm
```

Then, using Git Bash, run nano ~/.bashrc, use the down arrow key to ensure you are at the bottom of the file on a new line, and then paste the contents using Shift + Insert. Consider, beforehand, even deleting the .bashrc if you have a preexisting script that may conflict with the new additions and then creating a new .bashrc with the above contents.

Keep in mind that if emacs is not installed using choco, the emacs alias will not function. You can install emacs using choco by running choco install emacs. This will not work if you have not installed choco, which you can do by following https://chocolatey.org/install

Additionally, the source command will not work if you have not created a virtual Python environment named ENV3 in your home dir.

The cd will also not function if cm dir does not exist in the home dir. If so, then execute mkdir ~/cm.
2.2.4 How to Install WSL Ubuntu 22.04 on Command Line for Windows 🖓

We assume that you have installed Git Bash with support for pseudo console. If not or you are not sure, we recommend that you reinstall Git Bash with this tutorial:

https://github.com/cybertraining-dsc/reu2022/blob/main/project/git-bash-pseudo-console.md

We also need you to enable Linux line ending support through "NoAutoCrlf" (which is included in the previously linked tutorial) as some of our cloudmesh programs when interacting with wsl need this to be switched on too. After you have installed Git Bash with the right options, you can install WSL Ubuntu 22.04.

Execute each command on Git Bash:

Then you can run Ubuntu 22.04 by executing wsl -d ubuntu-22.04

If Git Bash freezes, pseudo console support is not enabled. In such a case, execute the wsl -d ubuntu-22.04 command on Powershell. However you will not have all features you need to run cloudmesh smoothly. Instead we recommend to reinstall Git Bash with the proper options.

2.2.5 How to Kill a Process using Command Line on Windows 🗘

To see the list of running processes and their PIDs on Windows, press Windows key + X and then press the T key. Then, click on the Details tab. You may also run tasklist on the command line, but with many processes, it may be difficult to sort through.

2.2.5.1 Using PID If using Git Bash, replace all slashes in the command with double-slashes (because Git Bash otherwise interprets them as paths instead of flags). Otherwise, this slash replacement is not necessary in cmd.exe and Powershell.

To kill a process by specifying its PID, execute:

```
taskkill /f /pid PIDNumberGoesHere
```

2.2.5.2 Using Process Name To kill a process by specifying the process name, execute:

taskkill /f /im ProcessNameGoesHere

For example, you can start an instance of the Windows calculator and then run:

taskkill /f /im calculator.exe

2.3 HPC RESOURCES

2.3.1 Rivanna 🖓

Rivanna is UVA's High Performance Computing (HPC) System. Rivanna is used to run programs that require a lot of memory or computing power. This tutorial will go through the basics of Rivanna, from obtaining access to running specialized jobs.

Learning Objectives

- Learn how to use Rivanna
- Learn how to set up VPN to access Rivanna from commandline
- Learn how to access Rivanna from a terminal including Windows

2.3.1.1 Links Here is a comprehensive list of useful links on how to navigate the Rivanna system.

- Presentations
 - Knuuti[1]
 - UVA Rivanna presentation, June 8th, 2022 [2]
- Intro to Rivanna
- Rivanna Allocations
- Rivanna Dashboard
- Globus Transfer
- Rivanna SLURM Overview

- Queues Documentation
- Documentation
- Login
- UVA
- Shell access
- JupyterLab
- UVA HPC Support Email

2.3.1.2 Logging in to Rivanna via web interface The user must install Duo Mobile on smartphone to use as an authentication service to approve logins (Figure 1). For security reasons we suggest never saving the password within the browser autofill.

	■University/Virginia
NetBadge Your first authentication step when logging	g in to UVA systems
Option 1:	Option 2:
Log in with your Digital Certificate . A digital D card that resides on your computer. <u>Get</u> one now!	Log in with your UVA computing ID and password. UVA computing ID abc123
	Password Forget your tassword or computing 8/2 Log In

After logging in at https://rivanna-portal.hpc.virginia.edu/, you will receive an email through your UVA email inbox to create an account on Rivanna. Once completing the sign-up process, it will take around 1 hour for your account creation to be finalized.

If connecting through SSH, then a VPN is required. Follow the instructions to download UVA Anywhere at the following link: https://in.virginia.edu/vpn

To log in to Rivanna, ensure you are connected to UVA Anywhere. You will be prompted to enter your UVA password (not your ssh-key password). If you do not have an ssh-key, then generate one by issuing ssh-keygen command in your terminal, such as Git Bash for Windows or the Terminal for macOS and Linux. Create a strong password that you will remember and press Enter to save to the default location. Then, issue the following commands (make sure you replace abc123 with your UVA Computing ID):

you@yourcomputer\$ ssh-copy-id abc123@rivanna.hpc.virginia.edu

2.3.1.3 Superpod A new resource will be integrated into rivanna. It is an NVIDIA Superpod. The Estimated deployment for testing by the end of this summer 2022.

Hardware Components include:

- 10 DGX-A100 (80GB) Servers (8 GPUs)
- 2 DGX-A100 (40GB) Servers (16 GPUs)
- HDR Infiniband (200GB/s) IB network fabric for GPU-to-GPU direct communication
- 500T ESS3200 pure SSD SpectrumScale (aka GPFS) direct-to-GPU storage array

The SuperPod is a collection of GPU servers (Nvidia DGX-A100) integrated into the Rivanna Cluster (on the GPU partition) with an 200Gb/s IB fabric interconnecting the GPUs with each other and with dedicated temporary storage for Nvidia GPUDirect features. The GPU Direct features allow for very fast transfers between the GPUs, storage and also for larger distributed GPU models.

2.3.1.4 Special DGX Nodes on Rivanna DGX A100 (udc-an36-1) is now available for your bii_dsc and bii_dsc_community members to test.

Here is the current status:

- The server is NOT YET integrated into the NVIDIA SuperPod because we are still awaiting networking equipment for implementing the SuperPod. We will be in touch if there is a need for a maintenance outage to integrate the server into the SuperPod.
- There is a RAID0 array of NVMe disks mounted locally at /localscratch. The capacity is 27TB. Please keep in mind that /localscratch is not backed up.

 The server is named udc-an36-1 and is currently in the bii-gpu partition with a permanent reservation named bi_fox_dgx for only bii_dsc and bii_dsc_community allocation members to use. To use this reservation for the A100 node, your researchers and students will have to use the following slurm flags:

```
#SBATCH --reservation=bi_fox_dgx
#SBATCH --account=<enter relevant allocation here>
#SBATCH --partition=bii-gpu
#SBATCH --gres=gpu:<number of GPUs to request>
```

For --account, users will enter either bii_dsc or bii_dsc_community depending on which group they belong to. You can find this by running the allocations utility at the commandline. For -gres=gpu:, users should enter the number of GPUs requested.

The full details of the reservation are below. I named the Slurm reservation "bi_fox_dgx". It's not a typo. To change the name of the reservation, I would have to delete the reservation and re-create it and the actual name of the reservation does not affect the reservation's usability. I've successfully tested the ability to use this reservation for all the current bii_dsc and bii_dsc_community members using the Slurm parameters I sent previously.

2.3.1.4.1 Starting interactive job To start interactive jobs on our special partition you can use the following command. Please note that interactive jobs get charged even if you are not typing anything in. Furthermore, you may block valuable time for others. Possibly a better strategy is to use other partitions as they have larger numbers of GUS.

```
ssh $USERNAME@rivanna.hpc.virginia.edu
$ ijob --reservation=bi_fox_dgx --account bii_dsc --partition=bii-gpu --gres=gpu:1
salloc: Pending job allocation 39263336
salloc: job 39263336 queued and waiting for resources
salloc: job 39263336 has been allocated resources
salloc: Granted job allocation 39263336
salloc: Waiting for resource configuration
salloc: Nodes udc-an36-1 are ready for job
```

```
$ nvidia-smi
```

which will result in

```
•-----
NVIDIA-SMI 470.103.01 Driver Version: 470.103.01 CUDA Version: 11.4
                                    Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
GPU Name
Fan Temp Perf Pwr:Usage/CapMemory-Usage | GPU-Util Compute M. |||MIG M. |
0
0 NVIDIA A100-SXM... Off | 00000000:07:00.0 Off |
                     B1251MiB | 0% Default |
| Disabled |
| N/A 29C P0 54W / 400W | 85MiB / 81251MiB |
            +-----+
        _____
| Processes:
 GPU GI CI
                              GPU Memory |
          PID Type Process name
   ID ID
                              Usage
0 N/A N/A 13486 G /usr/bin/X
0 N/A N/A 13639 G /usr/bin/gnome-shell
                                63MiB
                                 21MiB |
+-----+
```

2.3.1.5 Connecting to UVA Anywhere VPN via CLI Once you have your Rivanna account set up, you must set up your UVA Anywhere VPN, including downloading the necessary certificate from UVA. Once you install the certificate and install the Cisco AnyConnect software by following this link https://in.virginia.edu/vpn then you can utilize cloudmesh-vpn to connect to the VPN via command line. After following the documentation in the previous link, set up cloudmesh-vpn with the following commands:

```
$ cd ~/cm
$ git clone https://github.com/cloudmesh/cloudmesh-vpn
$ cd cloudmesh-vpn
$ pip install -e .
```

Then run this command in a terminal run as administrator (if using Windows) or else it will not work.

```
$ cms vpn connect
```

In order to disconnect from Rivanna, simply use the command:

\$ cms vpn disconnect

2.3.1.6 Installing Python 3.10.5 on Rivanna with ENV3 After you log in into Rivanna, you must update its Python version. Then, a virtual environment can be created.

2.3.1.6.1 Activate Python3 First Python3, must be activated and can be done by typing in the following:

\$ ssh rivanna rivanna\$ module load cuda cudnn rivanna\$ module load anaconda rivanna\$ conda create -n ENV3 -c conda-forge python=3.10.5

The last command may take a while. After it is done installing, activate the ENV3 virtual environment of Python 3.10.5 by typing in:

rivanna\$ **source** activate ENV3

2.3.1.6.2 .bashrc Now, you must open your **.bashrc** file. If it does not exist, create one. Using any editor, open it and copy and paste the following:

```
# Source global definitions
if [ -f /etc/bashrc ]; then
    . /etc/bashrc
fi

PS1="\s-\v\$"
alias vi='vim'
module load cuda cudnn
module load anaconda
source activate ENV3
```

2.3.1.6.3 Installing Cloudmesh into Rivanna Once Python 3.10.5 is installed with the ENV3 virtual environment. Cloudmesh can now be installed by first making a cm directory, installing the Cloudmesh Installer through pip and using the installer to get the Cloudmesh files into the cm directory. All of this can be done using the following commands:

\$ mkdir cm

```
$ cd cm
```

```
$ pip install cloudmesh-installer
```

```
$ cloudmesh-installer --ssh get cms
```

If the last command does not work due to access rights, type in:

```
$ cloudmesh-installer get cms
```

Additional packages can be similarly installed with

```
$ cloudmesh-installer get cc
$ cloudmesh-installer get sbatch
```

2.3.1.6.4 Example Script for Using GPUs Slurm jobs can be run in Rivanna through sbatch scripts. Various arguments such as the job, output, GPU, time, account, etc. can be specified as shown in the example script below.

```
#!/usr/bin/env bash
#SBATCH --job-name=mydemojob
#SBATCH --output=%u-%j.out
#SBATCH --error=%u-%j.err
#SBATCH --partition=gpu
#SBATCH -c 1
#SBATCH -c 1
#SBATCH --gres="gpu:v100:1"
#SBATCH --mem=4GB
#SBATCH --time=3:00
#SBATCH --account=c4gc
# your automation code here..
python mydemojob.py
```

2.3.1.6.5 How to Activate Different GPUs In the sbatch scripts, different GPUs can be activated by specifying it through gres argument.

```
#SBATCH --gres="gpu:p100:1"
#SBATCH --gres="gpu:v100:1"
#SBATCH --gres="gpu:k80:1"
#SBATCH --gres="gpu:a100:1"
#SBATCH --gres="gpu:a100:1"
#SBATCH --gres="gpu:rtx2080:1"
```

Assignment:

- How can we use a100 with 40 GB vs. 80 GB?
- How can we use the special a100 nodes?

2.3.1.7 Allocations The time you spend on Rivanna is allocated as Service Units (SUs) into the account you're using. When you type in the following command:

\$ allocations

The results show you which accounts you're currently under and the amount of SUs is in balance, reserved, and available as shown below.

Account	Balance	Reserved	Available
xyz_community	99999	0	99999
comp4gc	146527	0	146527

You are also able to access the information of all the users under the accounts you're under by typing in the following command:

```
$rivanna allocations -a comp4gc
```

2.3.1.8 SSH Config SSH Config makes it easier for users to connect to Rivanna by specifying arguments in the config file instead of typing it in the terminal.

The .ssh directory and config file can be created using the following commands:

```
$rivanna mkdir -p ~/.ssh && chmod 700 ~/.ssh
$rivanna touch ~/.ssh/config
$rivanna chmod 600 ~/.ssh/config
```

The config can then be edited using any terminal text editor of your choice, using the following command. Nano is used in this example.

\$rivanna nano ~/.ssh/config

Inside the config file, copy and paste the following:

```
host rivanna
User <USERNAME>
HostName rivanna.hpc.virginia.edu
IdentityFile ~/.ssh/id_rsa
```

2.3.1.9 Links

- ssh Config File[3]
- Roberet Knuuti, Presentation on how to use Rivanna
- UVA Staff, UVA Rivanna presentation, June 8th, 2022

2.3.2 Run Python MPI programs on Rivanna 💭

Learning Objectives

- · Learn how to submit Slurm jobs on Rivanna through SBATCH
- Learn how to run SBATCH through Bash files
- Learn how view the queue of running Slurm jobs

2.3.2.1 SBATCH in Bash Files SBATCH is a way to submit jobs onto Rivanna's compute nodes. With any call, there must be specifications for the job. Take this example <code>mlp_mnist.sh</code> file, which runs a python program <code>mlp_mnist.py</code>.

```
#!/bin/sh
#SBATCH --job-name=mlp_mnist.sh
#SBATCH --output=mlp_mnist_%A.log
#SBATCH --error=mlp_mnist_%A.error
#SBATCH --partition=gpu
#SBATCH --gres=gpu:k80:1
#SBATCH --gres=gpu:k80:1
#SBATCH --cpus-per-task=1
#SBATCH --mem=4GB
#SBATCH --time=3:00
echo "# cloudmesh status=running progress=1 pid=$SLURM_JOB_ID"
nvidia-smi
source activate ENV3
python mlp_mnist.py
echo "# cloudmesh status=done progress=100 pid=$SLURM_JOB_ID"
#
```

The name of the .sh file, as well as the output and error files are specified with the first three #SBATCH lines. The .log and .error files are additionally marked with %A, which will be replaced with the job's unique id.

The --partition specifies which queue the job will enter and thus the type of resources it is allowed. More information can be seen in Figure **??**.

![Slurm partitions](images/partitions.png){#fig:slurm-partitions}

The --gres is used for jobs that use the GPU. The last number specifies the number of cores and the middle specifies which GPU will be used. It can be left blank to use the default. Some GPUs are A100, V100, K80, P100, and P8.

The --cpus-per-task and --mem specify the CPUs and memory to be allocated, and the --time sets the max time allowed for Rivanna to complete the task, or else it will stop. For gpu partitioned jobs, this can be up to three days.

2.3.2.2 Running in SBATCH To run this bash file mlp_mnist.sh, use this command:

rivanna \$ sbatch mlp_mnist.sh

This submits the job to the partition, and it can be watched with either of the following commands:

watch squeue -u \${USER} or squeue -u \${USER}

These commands pull up all the jobs you have submitted. "Watching" will refresh this list every 2 seconds and can be exited with Ctrl-C. When the job has finished, there should be associated .error and .log files specified with the #SBATCH commands.

This specific bash file includes the nvidia-smi command which pulls up a chart with the NVIDIA GPU specifications. For example, here are the P8 details.

NVIDI	IA-SMI	470.1	03.01	Driver	Version:	470.103.01	CUDA Versi	on: 11.4
GPU Fan	Name Temp	Perf	Persis Pwr:Us	tence-M age/Cap	Bus-Id	Disp.A Memory-Usage	Volatile GPU-Util 	Uncorr. ECC Compute M. MIG M.
0 29%	NVIDI 25C	A GeFo P8	rce 11W	Off / 250W		9:62:00.0 Off iB / 11019MiB		N/A Default N/A

```
2.3.2.3 mlp_mnist.sh
```

```
#!/bin/sh
#SBATCH --job-name=mlp_mnist.sh
#SBATCH --output=mlp_mnist_%A.log
#SBATCH --error=mlp_mnist_%A.error
#SBATCH --partition=gpu
#SBATCH --gres=gpu:k80:1
#SBATCH --cpus-per-task=1
#SBATCH --mem=4GB
#SBATCH --time=3:00
# A100, V100, K80, P100: set in gres
echo "# cloudmesh status=running progress=1 pid=$SLURM_JOB_ID"
#module purge
#module load singularity
## Assuming that the container has been copied to the user's /scratch directory
#CONTAINERDIR=$HOME
#singularity run --nv $CONTAINERDIR/tensorflow-2.8.0.sif $HOME/experiment/mlp_mnist/
    \hookrightarrow mlp_mnist.py
nvidia-smi
# pip install cloudmesh-common
source activate ENV3
which python
python -V
python mlp_mnist.py
echo "# cloudmesh status=done progress=100 pid=$SLURM_JOB_ID"
#
```

```
2.3.2.3.1 Makefile
IMAGE=tensorflow-2.8.0
```

```
image:
    cp ${IMAGE}.sif ${IMAGE}-cms.sif
    singularity exec ${IMAGE}-cms.sif pip install cloudmesh-common -U
mlp_mnist:
    cd experiment/mlp_mnist; sbatch mlp_mnist.sh
watch:
    watch squeue -u ${USER}
cat:
```

cd experiment/mlp_mnist; cat *.error *.log

GPU	# Cores	Time to run mlp_mnist.sh
P8	1	16.521 seconds
K80	1	40.519 seconds
A100	1	24.557 seconds
V100	1	21.811 seconds
P100	1	31.927 seconds

Time for GPUs

2.4 DOCKER

2.4.1 Running Ubuntu Through Cloudmesh and Docker 🖓

2.4.1.1 Installing Docker with Chocolatey Docker is a platform that allows users to develop, publish, and run software applications in packages known as containers.

In order to install Docker, first have Chocolatey installed. After it is installed, go on Windows PowerShell and run as an Administrator and type in the following:

choco install docker-desktop -y

If another host operating system is being used, go on the official Docker Desktop website and download the installation file from there.

Here is the link to the download website: * https://docs.docker.com/get-docker/

Next, make sure open Docker Desktop. Wait for the Docker Desktop Starting screen to finish. If it hasn't been done already, create a Docker account on their official website and log on to the account on the application after.

2.4.1.2 Installing Cloudmesh with Git Bash Cloudmesh is a repository that can be downloaded and will be used to run Ubuntu on Docker. In order to download it, first, make sure Git Bash is downloaded so Unix commands can be run on non-Unix platforms through Bash. It's a good idea to download it specifically with Chocolatey and with Pseudo Console Support. Instructions can be found in the Sources section.

After Git Bash is installed, create a directory called cm using the command:

cd	~	
mka	dir	cm

Go into the cm directory and create the cloudmesh-cc folder using the following commands and let the folder install.

cd cm
git clone git@github.com:cloudmesh/cloudmesh-cc.git

2.4.1.3 Running Ubuntu with Docker Using Git Bash, go into the docker directory using the following command. This will lead to the docker/cloudmesh directory under cloudmesh.

cd ~/cm/cloudmesh-cc/docker/cloudmesh

Now, install the Make tool using the command:

```
choco install make -y
```

This tool controls the generation of executables from the program. It helps builds and installs programs through the use of Makefiles.

After Make is installed, it's a good idea to clean out any existing containers and images in Docker that'll interfere with running Ubuntu. This can be done using the command:

make cleanall

After cleaning everything, Ubuntu and Python will be installed onto a Docker container, an isolated package of software exclusively on Docker. Unix commands are now possible to execute on Docker after installing Ubuntu. This process can take a while. In order to install, type in the following command:

make image

Wait for everything to install. This is where commands differ based on the user's host operating system. If Windows is used, type in the following command to start up Ubuntu from Git Bash.

make wshell

If Windows is not used, type in the following command:

make shell

Now, Ubuntu should be being run through Docker and Unix commands can now be executed. Because everything now takes place in Unix, a different directory now exists under Ubuntu. Due to that, type in the following command to be directed to cloudmesh-cc to that.

pwd cd ~ pwd

The following output should be produced. The first output shows the home host directory on Windows while the second output shows the Unix host directory.

/home/USERNAME /root

At this point, pytests of the various software modules of cloudmesh-cc can now be executed without having to worry about the host operating system. For example, in order to test out the Job class for wsl under the file, type in the following command. All the tests should be able to pass.

```
cd cm/cloudmesh-cc
pytest -v -x --capture=no tests/test_job_wsl.py
```

2.4.1.4 Running Ubuntu Remotely on Rivanna In order to run Unix commands remotely, specifically Rivanna, the University of Virginia's Rivanna main supercomputing platform, first, have it installed. Instructions for installation are provided under the Sources section. A UVA account with a computing ID must be created first.

After Rivanna is installed, open Cisco AnyConnect Secure Mobility Client and connect to the UVA Anywhere VPN.

After that, in any directory, type in the following:

ssh-keygen

After the prompt shows up, press ENTER until all the prompts are through. Then, specifically type in the following:

ssh-copy-id COMPID@rivanna.hpc.virginia.edu

A prompt will ask if the user wants to continue connecting. Type in "yes". After that, it will ask for the user's Rivanna password, type it in. Once that is done, the user is now connected to Rivanna through Docker.

2.4.1.5 Links

- Get Docker [4]
- Getting Started [5]
- Introduction to Docker [6]
- Setting Up GitBash
- Rivanna Set Up

3 LINUX

3.1 Cloudmesh Project Ramdisk 🖓

Learning Objectives

- Learn how to set up a RAM disk
- Learn how to use a DAM disk

THis is an easy assignment to develop a cloudmesh command that sets up a RAMDISK in various operating systems. To facilitate this task we provide the first initial information.

The command should look similar to

\$ cms ramdisk --... --size=SIZE

We recommend that you use python humanize to make it easier to read file sizes such as 1GB (without humanize, the number of bytes is displayed instead of GB, making it hard to comprehend).

You could enhance the program to also integrate it into the OS so it starts up immediately after reboot. However for now a simple on demand program to start and stop the ramdisk is sufficient.

Advanced integration could include

- · dynamic ramdisk no reboot needed, but if reboot, ramdisk needs to be set up new
- ramdisk integrated in fstab with reboot
- backup and load ramdisk

On macOS a RAM disk with 512MB space can be created with the following command:

n = 512 * 2048
os.system('diskutil eraseVolume HFS+ "RAMDisk" `hdiutil attach -nomount ram://{n}`')

3.1.1 Ubuntu

On Ubuntu, a RAM disk and its read-only shadow can be created by:

```
mount -t tmpfs -o size=512m tmpfs /mnt/ramdisk
mount -t aufs -o br:/mnt/ramdisk=ro none /mnt/readonly
# mkdir /tmp/ramdisk; chmod 777 /tmp/ramdisk
# mount -t tmpfs -o size=256M tmpfs /tmp/ramdisk/
```

Links that could be useful include, but are not limited to

- Information about using /dev/shm is available at <http://ubuntuguide. net/ubuntu-usingramdisk-for-better-performance-and-fast-response>
- Various methods (in german) are documented at https://wiki.ubuntuusers.de/RAM-Disk_erstell en
- ramfs is an older file system type and is replaced in mostly by tmpfs.
- Windows https://forums.guru3d.com/threads/guide-using-imdisk-to-set-up-ram-disk-s-inwindows-with-no-limit-on-disk-size.356046/

Assignment:

3.2 USEFUL COMMANDS

3.2.1 Linux 🖓

• Learn how to use the most basic Linux commands

The book has some introduction material to linux, please contribute to the book. Make sure you do not duplicate what others have done or are doing. Please coordinate. Create a pull request with your contribution.

3.2.1.1 Introduction to Linux Please read the following book and contribute to it.

• Linux Book

3.2.1.2 Github PLease read the following tutorials and improve if needed

- Git Pull Requests
- Git ssh Command
- GitHub

3.2.2 Install pandoc from source 🖓

releases are at https://github.com/jgm/pandoc/releases

```
sudo apt purge pandoc
wget https://github.com/jgm/pandoc/releases/download/2.18/pandoc-2.18-1-amd64.deb
sudo dpkg -i pandoc-2.18-1-amd64.deb
```

3.2.3 Emacs 🖓

emacs is a command line editor that can be used to write bash scripts which are then used for specific purposes.

In the REU program, we used emacs to create changes in the .zshrc and .zprofile (for mac/linux) and the .bashrc and .bashprofile (for Windows).

3.2.3.1 Downloading and Installing In order to download and install emacs, there are two paths that one can take.

For Mac:

- Go to Aquamacs, which is a website that allows Mac users to download and install emacs.
- After that, follow the GUI installation instructions and then you should be able to launch the application from the command line or from the GUI dashboard.

3.2.3.2 Editing .zprofile and .zshrc for the REU The .zprofile and .zshrc bash scripts are scripts that are run upon starting up a terminal for mac (the command line). In order to set up this for the correct usage, we will be editing these scripts to contain the correct virtual environment so that we can correctly use it.

.zprofile

```
# Setting PATH for Python 3.9
# The original version is saved in .zprofile.pysave
PATH="/Library/Frameworks/Python.framework/Versions/3.9/bin:${PATH}"
export PATH
# Setting PATH for Python 3.10
# The original version is saved in .zprofile.pysave
PATH="/Library/Frameworks/Python.framework/Versions/3.10/bin:${PATH}"
export PATH
PATH="~/ENV3/bin:${PATH}"
export PATH
source ~/ENV3/bin:${bin:${PATH}}"
```

.zshrc

```
PATH="~/ENV3/bin:${PATH}"
export PATH
```

source ~/ENV3/bin/activate

In essence, this is sets up the .zshrc and .zprofile scripts to have the correct virtual environment.

If you have a different OS, Aquamacs also has other versions to support those OSes, but you could also use vi or another text editor.

4 PYTHON

4.1 Python Data Management 🖓

In python, there are several ways that data can be interpreted in order to generate the graphics for data visualization.

Through several examples, we will show how to manage different types of data and how to best interact with them. They are lists, dictionaries and CSV files.

4.1.1 Lists

Lists are clumps of continuous values that are put directly next to each other in the computer memory system.

4.1.1.1 Construction In python, lists can be constructed like this:

example_list = ['example', 2, 'b', 45, False]

Lists have order and can hold many types (bool, int, String, etc.) of values.

4.1.1.2 Accessing Values In python, it is easy to access values within a list. The following code provides an example of how to access certain values within a list:

```
index_4 = example_list[4]
print(index_4)
# output is False
```

It is important to note that lists have indices, which range from 0 to the length of the list - 1. The indices provide access to values within the list.

4.1.1.3 Updating Values To update a value within a list, simply utilize same brackets:

```
example_list[3] = 'bear'
print(example_list[3])
# output is 'bear' instead of 45
```

This will change the value at the third index from 45 to bear.

4.1.1.4 Python Built-In Methods Python has several built-in methods for lists. These include append() , clear() , copy() , count() , extend() , index() , insert() , pop() , remove() , reverse() , and sort() .

A user can utilize these methods to make changes in the necessary ways to the list.

4.1.2 Dictionaries

Dictionaries are like specialized lists. They hold a key-value pair that allows for a user to look up a key and find the associated value. Dictionaries are useful for storing values in a way that is more organized than a linear list. Furthermore, dictionaries make it easy for users to look up the necessary information.

4.1.2.1 Construction In python, dictionaries are constructed as follows:

```
example_dictionary = {
    'motorcycles': 2,
    'autocycles': 3,
    'cars': 4,
    'small_trucks': 6
    'large_trucks': '18'}
```

The string values are the keys, which provide access to the values within the dictionary. The colon provides the computer with the command for assigning key-value pair.

4.1.2.2 Accessing Values There are several built-in commands to access both the keys and values in a dictionary. They are as follows:

```
example_dictionary.get()
example_dictionary.keys()
example_dictionary.values()
```

The .get() method returns the value that is associated with the given key, the .keys() method returns a list of the keys alone, and the .values() method returns a list of the values alone. There are more methods (see the Python Built-In Methods section)

4.1.2.3 Updating Values To update the dictionary, there is one method that can be used:

```
example_dictionary.update({'motorcycles': 20})
# or to add a new key-value pair to the dictionary:
example_dictionary['New Key'] = 'New Value'
```

This will update the value associated with this particular key-value pair.

4.1.2.4 Python Built-In Methods There are several built-in methods that allow for more dictionary manipulation: They are clear(), copy(), fromkeys(), items(), pop(), popitem(), and setdefault().

4.1.3 CSV Files

CSV stands for *comma-separated-values* and is a data structure that is incredibly common for data management and analysis. There are many ways to access CSV files. The most common way is to use

pandas, a python library. However, python also has a built-in CSV module that can be used. We will show examples of using both below.

4.1.3.1 Installing and Importing Before beginning with any of these CSV manipulation tasks, it is necessary to install and import the correct modules and libraries. The following showcases this:

```
$ pip install pandas
```

```
import pandas as pd
import csv
```

4.1.3.2 Construction CSV files are files that exist elsewhere and have already been created. Therefore, for creation, we are not creating a CSV files, but rather deconstructing it into something that is usable.

In pandas, this means creating a dataframe, which is essentially and indexed table. In the python csv module, this means using the csvreader object within the module. Following are two examples showcasing how exactly to do this.

For the csv module:

```
# open the csv and creates the reader object for it
file = open('/Users/jacksonmiskill/Downloads/biostats.csv')
reader = csv.reader(file)
```

The reader is an object that was created by python developers to help parse through the csv files.

For the pandas module:

```
file = pd.read_csv("/Users/jacksonmiskill/Downloads/biostats.csv")
df = pd.DataFrame(file)
```

4.1.3.3 Accessing Values For the csv module:

It is more challenging to access files using the csv module as opposed to the pandas library. To make it more simple, it is necessary to convert the values that lie within the csv into a list in order to access.

```
data = []
for each_row in reader:
    data.append(each_row[2])
```

```
print(data) # output is the whole list
```

This code is available on GitHub

For the pandas module, it is less complicated to access that values. This is because the module includes a function that converts the data into a dataframe. After converting, you can use the various methods that are within the dataframe to essentially pass in the correct values.

4.1.3.4 Examples Once the csv values have been accessed, creation of the graphics can begin. Starting with the csv module and then moving into pandas the following will demonstrate this action.

The csv file that will be utilized for the following examples can be found here. It represents made up data on a group of made up people such as age, height, and weight.

It is slow and complicated to create graphs with the csv module. We have implemented a separate module called ConvertCSV which provides the user with the ability to convert the data received from the csv module into doubly nested lists, lists, and dictionaries, depending on necessity.

```
# reading in the data!
filename = path_expand("./biostats")
table = ConvertCSV.create_table(filename)
print(table)
list_names = []
list_heights = []
list_names = ConvertCSV.csv_read_to_list(table=table, index=0, convert=False)
list_heights = ConvertCSV.csv_read_to_list(table=table, index=3, convert=True)
dict_names = []
dict_heights = []
idict = ConvertCSV.csv_read_to_dict(table=table, index=3)
dict_names = list(idict.keys())
dict_heights = list(idict.values())
# now just plot these values. You can use whichever library you desire
# for the example, we use matplotlib, because it is simple
# list
plt.plot(list_names, list_heights)
plt.xlabel("Names")
plt.ylabel("Heights")
```

```
plt.xticks(rotation=90)
plt.savefig('images/csv-list-lineplot.png')
plt.savefig('images/csv-list-lineplot.svg')
plt.savefig('images/csv-list-lineplot.pdf')
plt.title("Names and Corresponding Height")
plt.show()
# dictionary
plt.plot(dict_names, dict_heights)
plt.xlabel("Names")
plt.ylabel("Heights")
plt.xticks(rotation=90)
plt.savefig('images/csv-dict-lineplot.png')
plt.savefig('images/csv-dict-lineplot.svg')
plt.savefig('images/csv-dict-lineplot.pdf')
plt.title("Names and Corresponding Height")
plt.show()
```

This code can be access from GitHub

This code produces Figure 2 and Figure 3.

Figure 2: CVS Line plot

Figure 2 is created using the data available here.

Figure 3: CSV dict line plot

Figure 3 is created using the data available here.

However, it is so much more simple to accomplish this with the pandas library:

```
file = pd.read_csv("/Users/jacksonmiskill/Downloads/biostats.csv")
biostats = pd.DataFrame(file)

plt.plot(biostats['Name'], biostats[' "Height (in)"'])
plt.xlabel("Name")
plt.ylabel("Height")
plt.ylabel("Height")
plt.savefig('images/pandas-lineplot.png')
plt.savefig('images/pandas-lineplot.svg')
plt.savefig('images/pandas-lineplot.pdf')
plt.title("Names and Corresponding Height")
plt.show()
```

This code can be accessed from GitHub

This code produces the Figure 4:

Figure 4: pandas-lineplot

Figure 4 is created using the data available here.

4.1.4 Links

4.1.4.1 Lists

- List Manipulation [7]
- Python List and Array Methods [8]

4.1.4.2 Dictionaries

- Dictionary Manipulation in Python [9]
- Python Dictionary Methods [10]
- Update a dictionary [11]

4.1.4.3 CSV Files

- Create a dataframe [12]
- CSV File Reading and Writing [13]
- CSV File Overview [14]
- Python Built in Read CSV Files [15]
- Extracting Information from a CSV File [16]
- List Index out of Range [17]
- Visualizing Data in CSV [18]

4.2 DATA MANAGEMENT MODULES

4.2.1 glob 🖓

glob is a small module that searches for files by reading the patterns of filenames. However, glob doesn't work in the same way regular expressions do as they follow standard Unix path expansion rules.

4.2.1.1 Glob with asterisk The example showcases different states under a single directory and counties under subdirectories. The files consist of .txt files consisting of different versions of a program under a single directory. Let us first create some file sin a temporary directory:

```
$ cd
$ mkdir tmp/subdir
$ touch tmp/a.txt
$ touch tmp/a-1.txt
$ touch tmp/b.txt
$ touch tmp/b+.txt
$ touch tmp/b+.txt
```

Now let us create the following file file in the home directory. To list all the file in the tmp directory you can use the asterisk '*':

```
import glob
for name in sorted(glob.glob('tmp/*')):
    print(name)
```

It will list the files in the directory tmp in alphabetical order.

tmp/a.txt
tmp/a-1.txt
tmp/b.txt
tmp/b+.txt

4.2.1.2 Single Character Wildcard (?) A question mark (?) can be used to search for files with the same pattern of names through singling out one character as a wildcard. This can be shown in this example.

import glob

```
for name in sorted(glob.glob('tmp/a-?.txt')):
```

print(name)

This program lists the files starting with a-, a single character and as prefix .txt

```
tmp/a-1.txt
```

4.2.1.3 Escape Characters glob can also search for files that contain a special characters through using the command glob.escape(char). This can be shown in this example.

```
import glob
specials = '!+('
for char in specials:
    pattern = 'tmp/*' + glob.escape(char) + '.txt'
    for name in sorted(glob.glob(pattern)):
        print(name)
```

The output shown here is a every file that specifically contains the characters !, +, or (. There is only file that does so which is:

tm/b+.txt

4.2.1.4 Subdirectories Not only glob can search for files recursively in directries with the ****** query

```
import glob
for name in sorted(glob.glob('tmp/**')):
    print(name)
```

In this example, will produce

tmp/subdir tmp/a.txt tmp/a-1.txt tmp/b.txt tmp/b+.txt tmp/subdir/c.txt

4.2.1.5 Links

Glob Documentation[19]

4.2.2 Mmap 🔿

mmap standards for memory-map files. Memory-mapping a file involves accessing files directly without the use of traditional I/O functions.

4.2.2.1 Reading The example shown here is a short, simple story that is contained in a .txt file. The file can be accessed here as example.txt.

Let's play with the dog, it's really **nice** out today!

First, the actual file should be opened using the open command with the parameter 'r' for reading and is indicated with the header f.

After that, memory-map file can be created using the command <code>mmap.mmap()</code> and can be indicated with the header <code>m</code>. Within the parentheses (), various arguments should be made.

The first argument should be f.fileno(), a file descriptor that opens and closes the mmap file.

The second argument is the size in bytes, in the form of a float, of the portion of the file to map. If it's o, like in this example, the entire file is mapped.

The third argument, which is optional, is the accessibility settings. In this example, it's set to read-only through access=mmap.ACCESS_READ.

The code in this example will read various parts of story.txt both progressively and through slices.

```
import mmap
with open('example.txt', 'r') as f:
    with mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) as m:
        # Reads the first ten characters
        print('Char. 1-10 (Read) :', m.read(10))
        # Reads a slice of characters
        print('Char. 1-10 (Slice):', m[5:14])
        # Reads the next ten characters
        print('Char. 11-20 (Read) :', m.read(10))
```

The following output is produced:

```
Char. 1-10 (Read) : b"Let's play"
Char. 1-10 (Slice): b' play wit'
Char. 11-20 (Read) : b' with the '
```

4.2.2.2 Writing In order to modify files, do the same procedure as reading files by opening the actual file with the open command; however, this time, use the parameter r + instead of r.

Then, create the mmap file with mmap.mmap with the same required arguments. The optional argument set to the default access mode of access=mmap.ACCESS_WRITE in this case.

After those commands, edits can then be made to the mmap file as shown in the following example.

```
import mmap
import shutil
# Copy the example file
shutil.copyfile('example.txt', 'example_copy.txt')
word = b'dog'
with open('example_copy.txt', 'r+') as f:
    with mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_WRITE) as m:
        # Memory-map file before change
        print('Memory Before:\n{}'.format(m.readline().rstrip()))
        m.seek(0) # rewind
        loc = m.find(word)
        m[loc:loc + len(word)] = b'cat'
        m.flush()
        # Memory-map file after change
        m.seek(0) # rewind
        print('Memory After:\n{}'.format(m.readline().rstrip()))
        # Actual file after change
        f.seek(0) # rewind
        print('File After:\n{}'.format(f.readline().rstrip()))
```

The following output shows that this access mode allows the modification of the actual file.

```
Memory Before:
b"Let's play with the dog, it's really nice out today!"
Memory After:
b"Let's play with the cat, it's really nice out today!"
File After:
Let's play with the cat, it's really nice out today!
```

This can be changed by setting the access mode to access=mmap.ACCESS_COPY as shown in this example.

```
import mmap
import shutil
# Copy the example file
shutil.copyfile('example.txt', 'example_copy.txt')
word = b'dog'
# Changing access settings
with open('example_copy.txt', 'r+') as f:
    with mmap.mmap(f.fileno(), 0,
                   access=mmap.ACCESS_COPY) as m:
        # Memory-map file before change
        print('Memory Before:\n{}'.format(m.readline().rstrip()))
        # Actual file before change
        print('File Before:\n{}'.format(f.readline().rstrip()))
        m.seek(0) # rewind
        loc = m.find(word)
        m[loc:loc + len(word)] = b'cat'
        # Memory-map file after change
        m.seek(0) # rewind
        print('Memory After:\n{}'.format(m.readline().rstrip()))
        # Actual file after change
        f.seek(0)
        print('File After:\n{}'.format(f.readline().rstrip()))
```

The following output shows that only the mmap file and not the actual file was modified in the end.

```
Memory Before:
b"Let's play with the dog, it's really nice out today!"
File Before:
Let's play with the dog, it's really nice out today!
Memory After:
b"Let's play with the cat, it's really nice out today!"
File After:
Let's play with the dog, it's really nice out today!
```

4.2.2.3 Links

mmap documentation[20]

4.2.3 Pickle 🗘

pickle is a module that turns Python objects into series of bytes that can be transmitted, stored, or reconstructed.

4.2.3.1 Encoding Data A data structure can be encoded into a string by using the command pickle.dumps(data). In this example, a dictionary is being encoded.

```
import pickle
# Creating dictionary of data
temperatures = {
    'red': 50,
    'blue': 30,
    'yellow': 20,
}
print('Temperatures:', temperatures)
# Pickling the data
pickle_temperatures = pickle.dumps(temperatures)
print('Pickle:', pickle_temperatures)
```

This following output is produced:

```
temperatures: [{'Red': 50, 'Blue': 30, 'Yellow': 20}]
Pickle: b' ... A binary string that we ommitted here ... .'
```

4.2.3.2 Decoding Data The encoded data can then be decoded using the command pickle.loads(data):

```
import pickle
```

```
# Creating dictionary of data
temperatures_0 = {'red': 50, 'blue': 30, 'yellow': 20}]
print('Initial temperatures:', temperatures_0)
# Encoding the data
pickle_temperatures_0 = pickle.dumps(temperatures_0)
```

```
# Decoding the data
temperatures_1 = pickle.loads(pickle_temperatures_0)
print('From pickle database:', temperatures_1)
```

```
# Checking authenticity
print("Same:", temperatures1 is temperatures2)
print("Equal:", temperatures1 == temperatures2)
```

This can be shown in the following output:

Initial temperatures: [{'Red': 5, 'Blue': 3, 'Yellow': 2}]
From pickle database: [{'Red': 5, 'Blue': 3, 'Yellow': 2}]

This command will produce data that is equal to the original data, but it's not the same as shown by the following output:

Same: False Equal: True

4.2.3.3 Links

• Pickle Documentation[21]

4.2.4 Shelve 🖓

shelve is a library that gives users the ability to create, store, modify, and control the accessibility of data without a relational database. A shelf has a string key and data that can be near anything as long as it is supported by pickle. This includes integers, dictionaries, and Objects.

4.2.4.1 Creating a New Shelf A new shelf can be created using the command: d = shelve.open(filename). Shelve can store objects; you can insert a dictionary, for example, as shown next:

```
import shelve
```

```
computers = shelve.open('computers.db')
computers['temperature'] = {
    'red': 80,
    'blue': 40,
    'yellow': 50,
}
```

On a Windows: This creates three files computers.db.bak, computers.db.dat, and computers.db.dir. These .bak, .dat, and .dir files hold the shelf information that can be accessed for future use.

For other computers, this creates the file 'computers.db'.

4.2.4.2 Accessing a Shelf After it's been created, it can be accessed while reading objects into variables.

import shelve

```
with shelve.open('computers.db') as computers:
    t = computers['temperature']
```

print(t)

This produces the following output:

```
{'red': 80, 'blue': 40, 'yellow': 50}
```

4.2.4.3 Making Shelf Read-Only The user can also make their data read-only by adding the flag parameter as shown:

```
shelve.open('computers.db', flag='r')
```

That way, when a user tries to modify it, it produces an error:

```
import dbm
import shelve
computers = shelve.open('computers.db', flag='r')
print('Temperature:', computers['temperature'])
try:
    computers['temperature']['green'] = 100
```

```
except dbm.error as err:
    print('ERROR:', err)
```

The following output is produced:

```
Temperature: {'red': 80, 'blue': 40, 'yellow': 50}
ERROR: The database is opened for reading only
```

4.2.4.4 Modifying Shelves In order to modify a shelf, simply open up the shelf again as shown:

```
shelve.open('shelf_name')
```

Make sure to use this before making the modification, or else it won't work. For simple assignments, this will suffice.

However, in most cases, you use the writeback=True parameter. This caches the modifications and slows down the saving process. As seen, however, you can now directly access and modify the shelf entries as it was a two-dimensional dictionary.

You can also delete shelf items using their keys with the del method.

```
import shelve
from pprint import pprint
computers = shelve.open("computers.db",writeback=True)
print('Initial temperature:')
pprint(computers['temperature'])
computers['temperature']['green'] = 101
del computers['temperature']['yellow']
print()
print()
print('Modified temperature:')
pprint(computers['temperature'])
```

Modifications are preserved as shown in this output:

```
Initial temperature:
{'red': 80, 'blue': 40, 'yellow': 50}
Modified temperature:
{'blue': 40, 'green': 101, 'red': 80}
```

4.2.4.5 Closing Shelves Lastly, in order to save the shelf so that it may be accessed next time, use the command '.close()'

```
import shelve
computers = shelve.open('computers.db')
# do your shelf operations here
computers.close()
```

4.2.4.6 Links

- Shelve Documentation[22]
- Python Object Persistence

4.2.5 Yaml Database (yamldb) 🖓

Yamldb is a python package that allows a user to store variables on a computer's hard-drive, as opposed to having variables stored in memory.

Yamldb makes use of the yaml data file, and it stores values in the yaml files so that they can be easy to use. The yaml files can be accessed like python dictionaries, which makes the process significantly easier for the user.

The yamldb package is used in the cloudmesh-cc section of the cloudmesh repository and can be accessed here.

4.2.5.1 Installing and importing Yamldb is easy to install. Simply execute the following command:

pip install yamldb

Then, to import yamldb to a python file, simply execute the following code:

from yamldb import YamlDB

Now, following these commands, the computer is set up to run and access yamldb.

4.2.5.2 Using yamldb Yamldb has several methods within itself that allow the user easy access to creating a yaml file and storing things within it. These things can be anything, really. The methods include: Yamldb(), .get(), .load(), .save(), and .search(). All of these functions can be used. The following is example code of how someone might use yamldb for their own code.
```
from yamldb import YamlDB
```

```
filename = 'PATH'
database = YamlDB(filename=filename)
database['queue1'] = 'job1'
database['queue2.job1'] = 'echo hello world'
d = database.get('queue1', default=3)
```

This code can be accessed from GitHub.

Which creates:

```
queue1: job1
queue2:
   job1: echo hello world
```

4.2.5.3 Accessing Values As one can see, these values are easy to access. Let's say, for instance, that we were trying to access the <code>queue2:job1</code> string "echo hello world". To do this, we would execute the following:

```
job = database.get('queue2')
print(job)
command = database['queue2'].get('job1')
print(command)
```

This code can be accessed from GitHub.

Which returns:

```
{'job1': 'echo hello world'}
echo hello world
```

4.2.5.4 Save, Load, and Search With the yamldb implementation, it is simple to save, load, and search. The following code shows this output.

```
from yamldb import YamlDB
filename = 'PATH'
database = YamlDB(filename=filename)
```

```
database['queue1'] = 'job1'
database['queue2.job1'] = 'echo hello world'
d = database.get('queue1', default=3)
database.load(filename) # loads the file
database.save(filename) # saves the file
database.search('queue1') # searches the file for the query
```

This code can be accessed from GitHub.

The .load() function loads in the current .yaml file that was created originally. The .save() function saves the any updates that were made to the .yaml file.

Outside of that, this should be the fully implementation of the yamldb python package.

The overview of this python package was accessed from here.

4.2.6 Requests with Python 🔿

The requests library is a python library that allows the user to interact with the internet via HTTP very easily. Typically, users specify the type of request they are making via their programming, but with the requests library, it is much easier to program for user enhancement.

4.2.6.1 Installing and Importing The requests library can be easily installed from the command line and imported at the top of any python file.

The following script can be used to install requests :

\$ python -m pip install requests

Once this has been done, it is simple to import the library into a python file. Simply execute the following:

import requests

4.2.6.2 Using Requests The requests library has many functions that allow it to be utilized in the way it is. Typical functions are requests.put(), requests.head(), requests.delete(), requests.get(), and requests.options(). What the requests library does is it properly encodes everything that is programmed by the user.

A basic example of how requests could be utilized within a program:

```
import requests
```

```
r = requests.get("https://api.github.com/events")
```

```
r = requests.post('https://httpbin.org/post', data={'key': 'value'})
```

```
r = requests.put('https://httpbin.org/put', data={'key': 'value'})
```

```
r = requests.delete('https://httpbin.org/delete')
```

```
r = requests.head('https://httpbin.org/get')
```

```
r = requests.head('https://httpbin.org/get')
```

This code can be accessed from GitHub

For requests, an r value of 200 means that the method was a success whereas a 100 means not a success.

In addition to these functions, the requests library has a plethora of other functionalities. It can send more data, convert to json files, execute patches, etc. The documentation for the requests library can be found here. This link is also where the examples are drawn from.

4.2.6.3 Links

Requests Documentation

4.2.7 FastAPI 🔿

• Learn how to use FastAPI

FastAPI is a Python framework that allows developers set up a REST service and define its functionality with an easy-to-use API.

4.2.7.1 FastAPI Install As FastAPI will need a web server, we will use uvicorn for development purposes. In a production environment other, more mature Web services are recommended. To install FastAPI and uvicorn simply use the command:

```
$ pip install "fastapi[all]"
```

If this command does not work, use this alternative:

bash \$ pip install --only-binary :all: fastapi[all]

However on some systems the [all] extensions may not yet be supported. Let us know how to install it there and we add it to our description. We for example found issues in a recent update to fastAPI that had difficulties to be installed on M1 MacOS.

4.2.7.2 FastAPI Quickstart One of the simplest FastAPI file looks like this, which we assume is placed in a file called main.py :

```
from fastapi import FastAPI
app = FastAPI()
@app.get("/")
async def root():
    return {"processor": "5950X"}
```

Start the live FastAPI app in the uvicorn server use the command:

```
$ uvicorn main:app --reload
```

This will yield the output

```
    INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
    INFO: Started reloader process [28720]
    INFO: Started server process [28722]
    INFO: Waiting for application startup.
    INFO: Application startup complete.
```

The first line includes information about which URL is used to contact it to obtain a response. An easy way to view it is to enter http://127.0.0.1:8000 in your browser. The JSON response will appear as:

{"processor": "5950X"}

One of the embedded features of FastAPI is its build in documentation framework based on OpenAPI schema, but it also has alternative formats such as json or redoc. You can look at it while going with your browser to the URL:

- OpenAPI: http://127.0.0.1:8000/docs.
- OpenAPI json: http://127.0.0.1:8000/openapi.json
- Redoc: http://127.0.0.1:8000/redoc

In case you like to have a different name than app you can just use a different variable

```
from fastapi import FastAPI
my_awesome_app = FastAPI()
@my_awesome_app.get("/")
async def root():
    return {"processor": "5950X"}
```

And copy it in a file main.py then you would call uvicorn like:

```
$ uvicorn main:my_awesome_app --reload
```

4.2.7.3 Path One of the mechanisms FastAPI provides it to easily specify the URL that is needed to trigger the functionality of the defined function after its definition.

We have seen such an example in <code>@app.get("/")</code> which activates the <code>root</code> function when the URL of the server is specified followed by "/"

You can add other paths and functions. Let us assume you add to our initial program the function

```
@app.get("/temperature")
async def temperature():
    return {"temperature": 0}
```

The if you use the URL http://127.0.0.1:8000/temperature, we will see

{"temperature": 0}

4.2.7.3.1 Path Arguments Not only can you call functions through the path, you can also pass arguments through the path. The arguments can be specified by type in the formal parameter. In this case, we specify that it should be an int. This helps FastAPI validate data, which is done through the package Pydantic.

```
@app.get("/temperature/{temp_id}")
async def temperature(temp_id: int):
    return {"temperature": temp_id}
```

4.2.7.3.2 Query and Search Parameters When you declare other function parameters that are not part of the path parameters, they are automatically interpreted as URL "query" parameters, as seen in the function get_job().

The query is the set of key-value pairs that go after the ? in a URL, separated by & characters. For example, in the URL:

```
http://127.0.0.1:8000/jobs/?skip=0&limit=10
```

In this case the query parameters are:

- skip: with a value of 0
- limit: with a value of 10

In addition, this can be used to search in the FastAPI, as seen in search_job(). You can use the URL
to search the jobs variables like this:

http://127.0.0.1:8000/job/?name=Job1

Output:

"Job1"

```
4.2.7.4 Running Through Git bash
```

```
import requests
```

```
result = requests.get('http://127.0.0.1:8000/job/?name=Job1')
```

```
print(result.text)
```

```
print(result.status_code)
print(result.headers['content-type'])
print(result.encoding)
print(result.text)
print(result.json())
```

Run python code on Git bash

\$ python r.py

where r.py is the file name, yielding the output:

```
"Job1"
200
application/json
utf-8
"Job1"
Job1
```

4.2.7.5 Integration with pedantic Assignment:

- Use pedantic to create a computer that contains temperature and load and implement it
- Use a regular python class to define dynamically access to temperature and proceessor load and contrast the implementation with the one where you use pedantic

4.2.7.6 Running the cc FastAPI service The cloudmesh cc FastAPI service can be started with

\$ cms cc start

To see the documentation you do not have to type in the URL in the browser, but instead you can use the command

\$ cms cc doc

which will open the url http://127.0.0.1:8000/docs in the browser.

To stop the server, use the command

\$ cms cc stop

4.2.7.7 Running through Docker In most cases, it is preferable to use a container to run the REST service, since there are many dependencies and packages. Here we will show you how to create and export an image for your FastAPI service to Docker.

To start, create a project directory. We will call it project . In this folder create a subdirectory called app . This can be done through Git Bash.

```
$ mkdir project
$ cd project
$ mkdir app
```

In the project directory, create two files requirements.txt and Dockerfile. requirements.txt will have the necessary package dependencies. Depending on what packages are used, this will vary. This is an example of what it would look like.

fastapi>=0.68.0,<0.69.0
pydantic>=1.8.0,<2.0.0
uvicorn>=0.15.0,<0.16.0</pre>

In Dockerfile, copy this code:

```
#
FROM python:3.9
#
WORKDIR /code
#
COPY ./requirements.txt /code/requirements.txt
#
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
#
COPY ./app /code/app
#
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"]
```

In your app folder, add your FastAPI code. In this tutorial we have used the name main.py . In addition, create a python file __init__.py . This can be left empty.

To build the Docker image, go back to the project directory and type the following code:

```
$ docker build -t myimage .
```

To create a running instance of this image, execute the following code:

```
$ docker run -d --name mycontainer -p 80:80 myimage
```

4.2.7.8 Testing In order to test the FastAPI code, we want to create a new test file. In this file, we import TestClient from fastapi.testclient. TestClient creates a test object that follows pytest conventions. In addition, you must import the app FastAPI object from the main module.

You can then create the test object by passing this FastAPI object into the TestClient. You use assert statements to test for validity.

```
from fastapi.testclient import TestClient
from .main import app
client = TestClient(app)
def test_temperature():
    response = client.get("/temperature")
    assert response.status_code == 200
    assert response.json() == {"temperature": 0}
```

You can create several test functions and run them with pytest . Lastly, there are other parameters for client.get() that may be further explored in the requests documentation.

4.2.7.8.1 Asynchronous Testing To test asynchronous functions, for example async queries, we can no longer use TestClient due to Pytest's inherent sync nature. Instead, we use a very similar client called HTTPX that can make both synchronous and asynchronous requests.

In addition, we must mark these async test functions with the pytest.mark.aniyo flag.

```
import pytest
from httpx import AsyncClient
from .main import app
@pytest.mark.anyio
async def test_temperature():
    async with AsyncClient(app=app, base_url="http://test") as ac:
```

```
response = await ac.get("/temperature")
assert response.status_code == 200
assert response.json() == {"temperature": 0}
```

The await functions sends the asynchronous request.

This can once again be run with pytest, and additional async or sync test functions can be added as well.

4.2.7.9 Links

- Fastapi First Step[23]
- Path Parameters[24]
- Docker Deployment[25]
- Using Test Client[26]
- Async Tests[27]

4.2.8 Queue 🖓

A queue is list that has an order.

There are three types of queues: FIFO (first in first out), LIFO (last in first out), and Priority Queue (order is based on the data's individual priority score).

4.2.8.1 FIFO Queue A FIFO queue is the most basic type of queue. Simply put, the values that go into the data structure first are the values that comes out of the data structure first.

FIFO queues are easy to implement:

```
import queue
# this queue is a FIFO queue
fq = queue.Queue()
for x in range(0, 10):
    fq.put(x)
while not fq.empty():
    print(fq.get())
```

This code can be accessed on GitHub

4.2.8.2 LIFO Queue A LIFO queue is another very basic type of queue. Simply put, it is a queue that operates the last item inserted being the first item that is removed.

LIFO queues are simple to implement:

```
import queue
# this queue is a LIFO queue
lq = queue.LifoQueue()
for x in range(0, 10):
    lq.put(x)
```

This code can be accesed on GitHub

4.2.8.3 Priority Queue Finally, priority queues are a more complex queue type. Priority queues work by inserting elements with a sorted priority. For example, if an 8 is inserted before a 2, the 2 will be removed first.

Priority queues are easily implemented:

```
# this queue is a Priority queue
pq = queue.PriorityQueue()
for x in range(0, 10):
    value = int(random.random() * 100)
    print('number being inserted into the priority queue', value)
    pq.put(value)
print()
while not pq.empty():
    print('number being removed from the pq', pq.get())
```

This code can be accessed on GitHub

All specifics on queues can be researched at the below links:

- Python Queues [28]
- Priority Queues in Python[28]
- Queue Documentations[29]

4.3 CHARTS

0

Charts	Matlotlib	Seaborn	Bokeh	Pandas
barchart	bar	barplot	vbar	plot.bar
grouped barchart	bar	catplot	-	plot.bar
stacked barchart	bar	-	vbar_stack	plot.bar()
spline chart	-	-	-	-
multiline chart	plot	lineplot	multi_line	plot.line
compound line chart	-	lineplot	-	plot.area
histogram	hist	histplot	-	plot.hist
linechart	plot	lineplot	line	plot.line
piechart	pie	-	wedge	plot.pie
exploded piechart	pie()	-	-	-
donutchart	pie()	-	Donut	-
countourplot	contour	kdeplot	-	-
distributionplot	hist	displot	Histogram	-
point chart	-	pointplt	-	plot.scatter
scatterplot	scatter	scatterplot	Scatter	plot.scatter
bubblechart	scatter	-	-	plot.scatter()
radar chart	plot	-	-	-
boxplot	boxplot	boxplot	Boxplot	plot.boxplot
pdf export	+	matplotlib	-	matplotlib
png export	+	matplotlib	export_png	matplotlib
svg export	+	matplotlib	export_svg	matplotlib
color palettes	-	color_palette	Color Palettes	-
interactive graph	-	-	+	-

4.3.1 Python Graphics Introduction 🖓

- Introduction to plotting libraries
 - Introduction to matplotlib

- Introduction to seaborn
- Introduction to bokeh
- Introduction to pandas plots
- Introduction to graph plotting libraries
 - Introduction to networkX
 - Introduction to garphvis
 - Introduction to mermaid
 - Introduction to rackdiag
- Identify which library to chose

In Python, data and equations can be visually represented using graphs and plots. Here we showcase how to use the different plotting libraries Matplotlib, Bokeh, and Seaborn.

For each of these frameworks exist an extensive example set as part of Galleries included with the original documentation. We encourage to browse through these examples to identfy plots that you may want to generate.

- matplotlib gallery
- seaborn gallery
- bokeh gallery
- pandas gallery

Another combined gallery is available as

• (interactive selection)[https://www.python-graph-gallery.com/]

And provides you with choices based on your selection.

4.3.2 Matplotlib 🔿

Matplotlib is the main plotting library that allows the user to visualize data. Matplotlib creates figures that can be manipulated and transformed. This includes manipulations of axes, labels, fonts, and the size of the images.

4.3.2.1 Installation To install matplotlib, please use the command:

```
$ pip install matplotlib
```

4.3.2.2 Import Statements The user will need to supply these import statements at the top of their code in order for Matplotlib to be imported.

```
import matplotlib.pyplot as plt
import numpy as np
```

4.3.2.3 Bar Chart In Matplotlib, it is easy to create bar charts. For example, this is a demonstration of a simple bar chart using data from a user using Spotify.

```
import matplotlib.pyplot as plt
# you can also do this: from matplotlib import pyplot as plt
data = {'Rock': 136, 'Rap': 112, 'Folk': 110, 'Indie': 90, 'Jazz': 25}
categories = data.keys()
count = data.values()
# Creating the bar chart
plt.bar(categories,
        count,
        align='center',
        color='darkorange',
        width=0.4,
        edgecolor="royalblue",
        linewidth=4)
# Editing the bar chart's title, x, and y axes
plt.xlabel("Genre of Music")
plt.ylabel("Number of songs in the genre")
plt.title("Distribution of Genres in My Liked Songs")
plt.show()
```

This program can be downloaded from GitHub. The output of this program is showcased in Figure 5.

Figure 5: Matplotlib Bar Chart (data from Spotify)

4.3.2.4 Line Chart The Matplotlib library in python allows for comprehensive line plots to be created. Here a line chart was created using a for loop to generate random numbers in a range and plot it against the x and y axis to display the changes between two variables/data sets.

```
import matplotlib.pyplot as plt
import random
x = []
y = []
for i in range(0, 100):
    x.append(i)
    value = random.random() * 100
    y.append(value)
# creating the plot and labeling axes and title
plt.plot(x, y)
plt.xlabel("x")
plt.ylabel("y")
plt.title("Plot Test")
plt.show()
```

This program can be downloaded from GitHub.

The output of this program is showcased in Figure 6.

Figure 6: Matplotlib Line Plot (Random Data)

4.3.2.5 Pie Chart A pie chart is most commonly used when representing the division of components that form a whole thing e.g. showing how a budget is broken down into separate spending categories. In Matplotlib, the function pie() creates a pie chart. In the following code example, a user's Spotify data will be displayed as a pie chart.

```
import matplotlib.pyplot as plt
data = {'Rock': 136, 'Rap': 112, 'Folk': 110, 'Indie': 90, 'Jazz': 25}
categories = data.keys()
count = data.values()
# Creating the pie chart
plt.pie(count, labels=categories)
plt.show()
```

This program can be downloaded from GitHub. The output of this program is showcased in Figure 7.

Figure 7: Matplotlib Piecahrt (Genres of Music from Spotify).

4.3.2.6 Contour Plot Unlike the previous types of plots shown, contour plots allow data involving three variables to be plotted on a 2D surface. In this example, an equation of a hyperbolic paraboloid is graphed on a contour plot.

```
import matplotlib.pyplot as plt
import numpy as np
# creating an equation for z based off of variables x,y
x, y = np.meshgrid(np.linspace(-10, 10), np.linspace(-10, 10))
z = 9 * (x ** 2 + 1) + 8 * x - (y ** 2)
levels = np.linspace(np.min(z), np.max(z), 15)
# creating a contour graph based off the equation of z
plt.contour(x, y, z, levels=levels)
plt.xlabel("x")
plt.ylabel("y")
plt.title("Function of z(x,y)")
plt.show()
```

This program can be downloaded from GitHub. The output of this program is showcased in Figure 8.

Figure 8: Matplotlib Multivariable Math Equation Shown on a Contour Plot.

A contour plot allows data and equations consisting of three variables to be plotted through plotting 3D surfaces as 2D slices on a xy plane. Matplotlib can display data and equations through contour graphs after they are inputted. Shown below are the parameters for plt.contour.

plt.contour([x, y], z, levels)

The independent variables x and y must be defined so the dependent variable z can be defined. The variables can come in the form of a list or dictionary or as an equation. The levels parameter determines the number of contour lines that can be drawn.

4.3.2.7 Annotations

4.3.2.7.1 Titles Titles enable to add a title to the graph. NOte that in most academic publications titles are not used and instead the information is added to a separate caption for the figure. Nevertheless, to add a title to your whole graph in matplotlib, simply type:

```
plt.title("Title you want to set").
```

4.3.2.7.2 XY Labels To se an X and Y Labeel which are needed foa all publisations you can set them with

```
plt.xlabel("Label you want to set")
plt.ylabel("Label you want to set")
```

4.3.2.7.3 Legend In case you have multiple graohs you will also want to provide some information about them in a legend:

plt.legend()

4.3.2.7.4 Rotating Ticks When a chart is created, ticks are automatically created on the axes. By default, they are set horizontally; however, they can be rotated using plt.xticks(degrees) for the x-axis or plt.yticks(degrees) for the y-axis.

```
import matplotlib.pyplot as plt
x = range(0, 4)
y = x
plt.plot(x, y)
# Rotating Ticks
plt.xticks(rotation=90)
plt.yticks(rotation=45)
plt.xlabel('x values')
plt.ylabel('y values')
plt.title(r'$y=x$')
plt.show()
```

This program can be downloaded from GitHub.

The output of this program is showcased in Figure 9.

4.3.2.8 Export Saving Chart as files is easy with the command:

```
plt.savefig("fname", dpi=300)
```

The name and format of the file are set as a string using fname. Make sure to specify the format of the file by using a . after the file name and specify the type after such as .pdf, .png, svg, etc.

The parameter dpi sets the DPI (Dots per Inch) of the image being saved. Specify this number in the form of a float. For example, set dpi=300. Please note that we always want o print the png, SVG, and PDF as dependent on publisher one or the other is preferred. The best way to deal with this is to create a custom save plot function such as

```
import matplotlib.pyplot as plt

def save_plt(name):
    plt.savefig(f'{name}.png', dpi=300)
    plt.savefig(f'{name}.pdf')
    plt.savefig(f'{name}.svg')
    plt.show()
```

This code can be accessed on GitHub

4.3.2.8.1 Display The plt.show() displays the graph on screen:

```
plt.show()
```

4.3.2.9 Links

- https://matplotlib.org/ [30]
- https://matplotlib.org/stable/api/pyplot_summary.html [31]
- https://www.activestate.com/resources/quick-reads/what-is-matplotlib-in-python-how-touse-it-for-plotting/ [32]
- https://www.geeksforgeeks.org/bar-plot-in-matplotlib/ [33]

4.3.3 Seaborn 🖓

Seaborn, like Matplotlib, is a data visualization tool. However, the graphs and charts that Seaborn can create are more complex than Matplotlib. The graphs that are created in Seaborn are more statistically detailed. Unlike matplotlib, Seaborn draws upon other imported libraries such as Matplotlib, Numpy, and Pandas. This is because Seaborn relies on more complex math (Numpy) and data frames (generated from Pandas) that are passed into its functions as the data.

Several types of plots can be made from Seaborn; they are relational, distributional, categorical, regression, and matrix plots.

We have created examples to demonstrate the abilities of Seaborn.

4.3.3.1 Installation Seaborn can be installed in the same way as the other libraries installed earlier. The user who is installing the library should make sure that it is being installed in the correct environment.

\$ pip install seaborn

4.3.3.2 Import Statements The user will need to supply these import statements at the top of their code in order for Seaborn to be imported. Additionally, the data created for the examples represents a user's Liked songs from Spotify.

```
import seaborn as sns
import matplotlib.pyplot as plt
data = {'Rock': 136, 'Rap': 112, 'Folk': 110, 'Indie': 90, 'Jazz': 25}
categories = list(data.keys())
count = list(data.values())
personal_rank = [3, 4, 2, 1, 5]
```

4.3.3.3 Relational Plots Relational plots showcase the relationship between variables in a visual format. It is a broad term for data representation. Examples of relational plots in Seaborn are relplot lineplot and scatterplot.

It is simple to create a relational plot with Seaborn:

```
sns.relplot(x=months, y=photos)
plt.xlabel("Month of the year")
plt.ylabel("Amount of photos taken")
plt.show()
```

This program can be downloaded from GitHub. The output of this program is showcased in Figure 10.

Figure 10: Seaborn Line Plot Created from User Spotify Data

4.3.3.4 Distribution Plots A distribution plot shows how the data is concentrated in a range of values. The graph that appears looks similar to a bar graph in that there are bars. However, these bars show the concentration of a variable across a range of values rather than the quantity possessed by a singular variable. The distributional plots in Seaborn are displot histplot kdeplot ecdfplot and rugplot.

```
sns.displot(x=source, y=value)
plt.show()
```

This program can be downloaded from GitHub. The output of this program is showcased in Figure 11.

Figure 11: Seaborn Distribution Plot Created from User Spotify Data

4.3.3.5 Categorical Plots Categorical plots are statistical graphs that help visualize the magnitudes of different variables in a dataset. A type of categorical plot is a bar chart, exactly like the example produced in the Matplotlib section. The categorical plots are catplot stripplot swarmplot boxplot violinplot boxenplot pointplot barplot and countplot.

Categorical plots are relatively simple to implement. If using the catplot method, it is necessary to include the kind parameter.

```
sns.barplot(x=source, y=value)
plt.show()
```

This program can be downloaded from GitHub

The output from the program is showcased in Figure 12.

Figure 12: Seaborn Categorical Plot Created from User Spotify Data

4.3.3.6 Regression Plots Regression plots are like relational plots in the way that they help visualize the relationship between two variables. Regression plots, however, show the linear correlation that may or may not exist in a scatter plot of data. Their regression plots are <code>lmplot regplot</code> and <code>residplot</code>.

Regression plots are simple to implement:

```
sns.regplot(x=months, y=photos)
plt.show()
```

This program can be downloaded from GitHub. The output of this program is showcased in Figure 13.

Figure 13: Seaborn Regression Plot Created from User Spotify Data

Each of these plots can be manipulated to the users needs via the API that is listed in the sources section.

4.3.3.7 Saving Figures Saving figures created by Seaborn is quite simple as it uses matplotlib.

plt.savefig('figure_path/figure_name.png', dpi=300)

See the matplotlib section fro a save function saving in svg, pdf, and png.

This program can be downloaded from GitHub

We have included in the matplotlib section a function example that saves to png, svg, and PDF which is often needed for publications.

4.3.3.8 Links

- https://seaborn.pydata.org/api.html [34]
- https://www.geeksforgeeks.org/python-seaborn-tutorial/[35]
- https://www.geeksforgeeks.org/introduction-to-seaborn-python/ [36]
- https://www.geeksforgeeks.org/plotting-graph-using-seaborn-python/[37]
- https://stackoverflow.com/questions/30336324/seaborn-load-dataset [38]
- https://github.com/mwaskom/seaborn-data/blob/master/planets.csv [39]

4.3.4 Bokeh 🗘

Bokeh [40] is a Python library useful for generating visualizations for web browsers. It generates graphics for all types of plots and dashboards powered by JavaScript without the user's need to write any JavaScript code. The guide below will walk you through useful Bokeh commands and features.

4.3.4.1 Installation To install Bokeh, please use the command:

\$ pip install bokeh

4.3.4.2 Import Statements To plot figures, we import the show and figure functions from the Bokeh libraries.

from bokeh.io import show
from bokeh.plotting import figure

4.3.4.3 Bokeh Plotting bokeh.plotting is the library's main interface. It gives the ability to generate plots easily by providing parameters such as axes, grids, and labels. The following code shows some of the simplest examples of plotting a line and a point on a chart.

This program can be downloaded from GitHub. The output is shown in Figure 14.

Figure 14: Bokeh Line and Point Plotted on a Chart

4.3.4.4 Annotations The titel can be set with **title**. Bokeh allows setting annotations with the paarmeters **x_axis_label** and **y_axis_label**. To set the range of the s and y axis you can use **x_range** and **y_range**.

4.3.4.5 Dimensions and Color The dimension of the plot can be set with **height** and **width**. The background color can be changed with **background_fill_color**, however, we always want to set it to white for publications.

4.3.4.6 Scatter Plot The Bokeh library provides various marker shapes for marking points on the scatter plot. The example below demonstrates how to create a scatter plot with two points at locations (1,3) and (2,4) respectively with circular and square marker shapes. The size parameter controls the size of the marker.

```
from bokeh.io import show
from bokeh.plotting import figure
p = figure(title="Scatter Plot")
# Circle
p.circle([0, 3], [4, 5], size=10)
# Square
p.square([1, 2], [3, 4], size=10)
show(p)
```

This program can be downloaded from GitHub. The output is shown in Figure 15.

Figure 15: Bokeh Scatter Plot with Various Point Shapes

The list possible marker types and the functions used to create them can be found here.

4.3.4.7 Line Plots The library provides a series of functions for creating various types of line graphs ranging from a single line graph, step line graph, stacked line graph, multiple line graph, and so on.

Editors Gregor von Laszewski, Geoffrey C. Fox, laszewski@gmail.com

```
from bokeh.io import show, export_png, export_svg
from bokeh.plotting import figure
import random

x = []
y = []
for i in range(0, 100):
    x.append(i)
    value = random.random() * 100
    y.append(value)

p = figure(title="Plot Test", x_axis_label="x", y_axis_label="y")
p.line(x, y)
show(p)
```

This program can be downloaded from GitHub The output is shown in Figure 16.

Figure 16: Bokeh Line Plot with random data.

You can find the source code for other types of line plots here: http://docs.bokeh.org/en/latest/docs/ user_guide/plotting.html

4.3.4.8 Bar Chart Similarly, the hbar() and vbar() functions can be used to display horizontal and vertical bar graphs, respectively.

```
from bokeh.io import show, export_png, export_svg
from bokeh.plotting import figure
data = {'Rock': 136, 'Rap': 112, 'Folk': 110, 'Indie': 90, 'Jazz': 25}
```


This program can be downloaded from GitHub. The output is shown in Figure 17.

4.3.4.9 Saving Figures Bokeh supports outputs to a static HTML file with a specific name.

After importing the Bokeh plotting interface, it is possible to be able to create different types of plots utilizing the figure created with the figure function.

4.3.4.9.1 Saving Figures as PNG As the purpose of Bokeh is to create interactive .html visualizations, it is recommended to keep your visualizations in this format. However, it may sometime be necessary to save as an image file. In order to save figures as a PNG, both Selenium and a web driver will need to be installed. We will use Chromium here for our web driver. To install both at once, use the commands:

(Windows)

```
$ pip install selenium chromedriver-binary
$ pip install chromedriver-binary-auto
```

There seems to be issues installing chromedriver-binary on Mac computers due to the built-in security, so it is recommended to simply save Bokeh figures as a .html file.

When writing a program, Chromium must be added to the PATH through these import statements:

```
from selenium import webdriver
import chromedriver_binary
```

Bokeh appears to support saving files as a .svg but it seems to have bugs and is not recommended. To use the functions, export_png() and export_svg() must be imported, and can be used as follows:

```
from bokeh.io import export_png, export_svg
```

```
export_png(fig, filename="file-name.png")
export_svg(fig, filename="file-name.svg")
```

Assignment:

- find out how to add a dpi to the png image. Set it to 300dpi.
- modify this document and the code accordingly

Note that Chromium is slow and this process may take delay the execution and performance of the program.

Similarly to Matplotlib, Bokeh can utilize a function to save all created images.

```
from matplotlib import pyplot as plt
from bokeh.io import export_png, export_svg
import os

def save(p):
    name = os.path.basename(__file__).replace(".py", "")
    export_png(p, filename=f"images/{name}.png")
    export_svg(p, filename=f"images/{name}.svg")
    plt.show(p)
```

This code can be accessed on GitHub.

4.3.4.10 Links

- Bokeh user guide for plotting [41]
- Latest Bokeh Information [42]
- Bokeh Documentation [43]
- Exporting Plots in Bokeh [44]

4.3.5 Pandas Graphics 🖓

Pandas is a useful library for working with data. It relies on storing data in data frames. Instead of using a set of ordered pairs, a data frame in Pandas is similar to an Excel Spreadsheet or an SQL data frame and supports multiple rows and columns in a tabular fashion.

Visualization for Panda's data frames are an important tool for understanding the data set. Panda's visualization tools are based off of Matplotlib, so many of the plotting functions are the same.

4.3.5.1 Installation To install Pandas, please use the command:

\$ pip install pandas

4.3.5.2 Import Statements The user will need to import both Pandas and Matplotlib in order to create and visualize data frames. In addition, Python's numpy may be a useful library for mathematical procedures on the data.

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
```

4.3.5.3 Bar Chart Creating a bar chart with data frames is similar to creating bar charts with Matplotlib, with a couple differences in how you manipulate the data. In the following program, we use the same data and modifications as the Matplotlib bar chart example that can be found on Github.

```
import matplotlib.pyplot as plt
import pandas as pd

data = {'Rock': 136, 'Rap': 112, 'Folk': 110, 'Indie': 90, 'Jazz': 25}
categories = data.keys()
count = data.values()

df = pd.DataFrame({'Count':count, 'Categories':categories})
```

This program can be downloaded from GitHub. The output of this program is showcased in Figure 18.

Figure 18: Pandas Bar Chart of Spotify Data

Note the differences in creating the chart. Since data frames support multiple dimensions of data, the x and y we want to graph must be specified in df.plot.bar(). However, editing the title and axes are the same as in Matplotlib.

4.3.5.4 Line Chart A line chart is typically used for time series data and non-categorical data. Pandas supports line chart visualization with plot.line(). We use the same data and modifications as the Matplotlib line chart example that can be found on GitHub. Note that since this data relies on random number generation the graphs will look slightly different each time.

```
import matplotlib.pyplot as plt
import pandas as pd
import random
x = []
y = []
for i in range(0, 100):
    x.append(i)
    value = random.random() * 100
    y.append(value)
df = pd.DataFrame({'x':x, 'y':y})
# creating the plot and labeling axes and title
df.plot.line(x='x', y='y')
plt.ylabel("y")
plt.title("Plot Test")
plt.show()
```

This program can be downloaded from GitHub. The output of this program is showcased in Figure 19.

4.3.5.5 Pie Chart A pie chart is useful for showing a division of a whole. Data that can be represented by a pie chart can also be used to make a bar chart, since both typically use categorical counts. Pandas uses plot.pie() to make a pie chart, in a manner similar to plot.bar(). We use the same data used to create the line chart for this visualization.

```
import matplotlib.pyplot as plt
import pandas as pd
data = {'Rock': 136, 'Rap': 112, 'Folk': 110, 'Indie': 90, 'Jazz': 25}
categories = data.keys()
count = data.values()
df = pd.DataFrame({'Count':count},index=categories)
plot = df.plot.pie(y='Count',legend=None)
save()
```

This program can be downloaded from GitHub.

The output of this program is showcased in Figure 20.

Figure 20: Pandas Pie Chart from Spotify Data

Note that instead of listing both the Categories and the Count as data, we use the categories as index. This gets the proper labeling for our pie chart. In addition, Pandas automatically adds a legend, but this is unnecessary so we can remove the legend by setting the parameter legend=None in plot.pie().

4.3.5.6 Exporting Note that this is the same as the Matplotlib tutorial found here on GitHub.

To export your graph as an image file, you can use the Matplotlib function savefig("fname.x"). You can specify the file type by filling in .x with .pdf, .png, svg, etc.

The parameter dpi sets the DPI (Dots per Inch) of the image being saved. Specify this number in the form of a float. For example, set dpi=300.

Additionally, there is another way to save files that may be faster than calling a specific method for each file. The following code showcases this:

```
import matplotlib.pyplot as plt
import os
from matplotlib import pyplot

def save():
    name = os.path.basename(__file__).replace(".py", "")
    plt.savefig(f'/filepath/{name}.png')
    plt.savefig(f'filepath/{name}.pdf')
    plt.savefig(f'filepath/{name}.svg')
    plt.show()
```

This code can be accessed on GitHub

The very last command is plt.show(), as this command displays the graph that you made. To show, simply type:

plt.show()

4.3.5.7 Links

- https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.bar.ht ml [45]
- https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.line.h tml [46]
- https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.pie.ht ml [47]

4.4 GRAPHS WITH PYTHON

4.4.1 Networkx 🗘

networkx is a python library that allows a user to create graphs. The library allows the user to create different kinds of graphs, included directed and undirected. With this in mind, the following is a basic overview of the library.

4.4.1.1 Installing and Importing Thankfully, networkx can be super easily downloaded. Simply execute the following:

\$ pip install networkx

4.4.1.2 Creating a graph It is super simple to create a graph, add nodes to the graph, and add edges to the graph. For the purposes of this tutorial, we will be working with a synthetic job queueing service. Each node represents a job and the edges are the edges that connect each job.

The following is the code that was created:

This code can be accessed from GitHub

To create the graph and add the above nodes and edges, networkx provides super simple methods.

```
1 import networkx as nx
2
3 graph = nx.Graph() # creates the graph that we will use
4
5 graph.add_nodes_from(nodes) # adds the nodes from the dict we created
6 graph.add_edges_from(edges) # adds the edges from the dict we created
7
8 print(graph) # prints: "Graph with 5 nodes and 4 edges"
```

This code can be accessed from GitHub

Thus, we have created the graph.

4.4.1.3 Accessing It is necessary to be able to access the elements within the graph. There is a slightly strange way of going about doing this with networkx. Rather than being able to directly access the element you input, it will return the adjacent element. Thus, it seems to be necessary to have a dummy head, which makes it so that the first node inserted into the graph can be accessed.

The following looks into this:

9 print(graph['job-1']) # will return {'job-2' : {}}

This code can be accessed from GitHub

4.4.1.4 Removing nodes It is very easy to remove nodes and edges using networkx. This can be accomplished by executing the following:
This code can be accessed on GitHub

4.4.1.5 Colors and Labels It is super simple to add colors and labels, as well as display the networks in a graphic notation. To do so, execute the following code:

```
color_map = []
for n in nodes:
    color_map.append('lightblue')
nx.draw(G, node_color=color_map, with_labels=True)
plt.show()
```

This code can be accessed on GitHub

The color_map was created as a list based on the number of nodes in our list of nodes we created before. Thus, it makes it very easy to implement as it allows the user to update individual nodes, if needed.

The code produces the following image:

Figure 21: network-image created with networkx python package

There are many other ways to manipulate the nodes and edges. These ways can be accessed from the official documentation

4.4.2 Graphviz 🗘

graphviz is a library that can be installed on Python which renders graphs from the DOT languages, allowing for visualizations of data structures using undirected or directed graphs consisting of nodes and edges of various shapes and colors.

4.4.2.1 Installation and Importing To take advantage of the graphing capabilities and convenience of graphviz, we must install it with pip install graphviz as well as utilize the standalone installer. It is more convenient to use package managers.

4.4.2.1.1 Windows To install graphviz on Windows fully, first, have Chocolatey installed. Next, run Command Prompt as an administrator and type in the following:

```
choco install graphviz -y
```

4.4.2.1.2 Mac To install graphviz on Mac, you must have Homebrew installed. Then, issue the command:

brew install graphviz

4.4.2.1.3 Linux graphviz is supposed to come included with Ubuntu. Nonetheless, if you still need to manually install graphviz, issue the command:

```
sudo apt install graphviz
```

4.4.2.2 Creating the graph, adding nodes, and adding edges Creating a basic graph with nodes and edges is very simple using graphviz. The following example is a synthetic job queueing service. Each node represents a job and the edges connect the jobs.

There are two types that can be made using graphviz. Regular graphs can be made using Graph(). They don't have arrows. Directed graphs can be made using Digraph(). They do have arrows.

Nodes can be created using node() where the variable of the job can be defined and labeled.

Edges can be created either using edge() or edges(), as used in this example. The commands take in the start and end node variables which will create either one or multiple edges, respectively. Edges can be labeled too.

The following is the code that was created:

This code can be accessed via Github.

Shown here in Figure 22 is the graph produced from the code.

Figure 22: Sequence of Bash Command Path

4.4.2.3 Subgraphs Subgraphs are clusters of nodes and edges that can be created using the subgraph() command. However, it's required to have the prefix 'cluster' in the name of it.

The following code shows the usage of subgraphs by expanding on the last example.

```
import graphviz
g = graphviz.Digraph('jobs in queues', filename='subgraph-graphviz.gv')
with g.subgraph(name='cluster_1') as s:
    s.node('job-1', 'ls')
    s.node('job-2', 'echo hello world')
    s.node('job-3', 'cd')
    s.node('job-4', 'cd cm/cloudmesh-cc')
    s.node('job-5', 'pytest tests')
    s.edges([('job-1', 'job-2'), ('job-2', 'job-3'), ('job-3', 'job-4'),
             ('job-4', 'job-5')], )
with g.subgraph(name='cluster_2') as s:
    s.node('job-6', 'cd')
    s.node('job-7', 'cd cm')
    s.node('job-8', 'cd cm/cloudmesh-alex')
    s.node('job-9', 'git status')
    s.node('job-10', 'git pull')
```

This code can be accessed via Github.

Shown here in Figure 23 are the subgraphs produced by the code.

4.4.2.4 Data Structures Rectangular data structures can be created in graphviz when the shape of the nodes is set to 'record'. This specific type of data structure allows for nodes to be clustered together in the same rectangle. The following code shows a diagram of different files and directories.

```
import graphviz
s = graphviz.Digraph('files in directories', filename='structure-graphviz.gv')
s.node_attr={'shape' : 'record'}
s.node('s1', '<d1> cloudmesh-cc | <d2> workflow')
s.node('s2', '{<d1> cloudmesh | <d2> tests}')
s.node('s3', '<d1> contribute | {<d2> graphs |{<d3> graphviz | <d4> networkx}}')
s.edges([('s1:d1', 's2:d2'), ('s1:d2', 's3:d4')])
s.view()
```

This code can be accessed via Github.

Shown here in Figure 24 are the data structures produced by the code.

Figure 24: Data Structure of Various Directories and Files

4.4.2.5 Colors and Labels It is super simple to add colors and labels to graphs, nodes, and edges in graphviz.

In terms of labels, just add the parameter label='' inside the attr(), node(), or edge() commands. The font color of the label can be set using fontcolor=.

In terms of color, just add the parameter color='' inside the attr() or node() commands. This will change the color of the perimeter. In order to fill, use the parameter style='filled' or set the fill color using fillcolor=''.

Gradients can also be added by setting a colon : between two different colors. Furthermore, the angle of the gradient can be set using the parameter gradientangle=''.

The following code demonstrates many of the features explained.

```
import graphviz
g = graphviz.Digraph('Colors', filename='color-graphviz.gv')
g.attr(bgcolor='red:pink', label='Red Graph', fontcolor='white')
with g.subgraph(name='cluster') as c:
    c.attr(color='cyan', style='filled', label='Cyan Cluster',
        fontcolor='white')
    c.node('n1', 'Orange Node', shape='circle', fillcolor='red:yellow',
        style='filled', gradientangle='90')
    c.node('n2', 'Yellow Node', shape='diamond', color='yellow', style='filled')
    c.edge('n2', 'n1', label='Edge 1')
g.view()
```

This code can be accessed via GitHub.

Shown here in Figure 25 is what the code produced.

Figure 25: Label Directed Graph with Various Colored Nodes

4.4.2.6 Links

- Graphviz Website
- Graphviz Example
- Graphviz API Reference

4.5 SELECTED CLOUDMESH TOPICS

4.5.1 cms sys command generate 🖓

· Learn how to create your own cloudmesh commands

Assignment:

Locate in the book how to use cms sys command generate. Generate a command with your username. No commit of this is necessary, but we need to make sure you understand how to create a command.

4.5.1.1 Creating CLI commands using the cloudmesh command Command line interface commands essentially allow a user to execute commands that have been programmed in python from the command line (i.e. on a macOS terminal). In the cloudmesh project, it is easy to do this, as there is a built-in module that allows a user to develop this command. We assume that the user has properly set up cloudmesh on their own device. The following showcases the sys command generate :

- Execute cms sys command generate in the home directory of the device. This essentially calls a function within cloudmesh cmd5 that allows
- Once you have done this, it is necessary to cd to that directory. For instance, if you typed: cms sys command generate apples, then that would have created a command within the directory you were in. Thus, you need to change directory and navigate to that new directory. Then, it is necessary to run python setup.py in your command line. Then execute pip install. This will configure your device to have the proper requirements for the command that you are generating.
- After this, you can create python scripts within the directory that can be called as an actual command. You will notice a directory called cloudmesh -> "your command" -> command -> and then finally, "yourcommand".py
 In this final python file, you can edit and create what it is you were intending on creating.
- When you add new arguments to the command, you have to add those arguments to the arguments parser function. This ensures that the parser correctly separates all arguments of the program.

• Finally, in the if statements at the end of the program, it is necessary to indicate what arguments/options are specified and what should be done if these commands + arguments + options are called.

Important Sidebar

The generate command function relies on an API base called docopts which is a framework for creating a command line interface. What this does in essence is it creates command line commands based on the framework of a python script.

In this framework there are a few parts to understand: * Usage- indicate how the commands would be called, specifically. * Arguments- indicates what can be passed into the commands to make them work in a specific way. * Options- indicates the options that can be specified. These are optional.

It is necessary to update the arguments in the corresponding if statement.

4.5.1.1.1 Example of the CLI Creation Here is an example command:

```
from cloudmesh.shell.command import command
from cloudmesh.shell.command import PluginCommand
class GregorCommand(PluginCommand):
@command
def do_gregor(self, args, arguments):
.....
::
Usage:
gregor -f FILE
gregor list
This command does some useful things.
Arguments:
FILE a file name
Options:
-f specify the file
.....
print(arguments)
if arguments.FILE:
print("You have used file: ", arguments.FILE)
return ""
```

This example can be found here in section 6.0.7.1.4 Create your own Extension.

Again, all of this relies on having cloudmesh properly downloaded and installed.

4.5.1.1.2 Example of CLI meshing with a python script CLI Implementation:

```
def do_cc(self, args, arguments):
        .....
        ::
          Usage:
                cc upload --data=FILENAME
                cc update --data=FILENAME
                cc delete --data=FILENAME
                cc create --queues=QUEUES --database=DATABASE
                cc add --queue=QUEUE --job=JOB --command=COMMAND
                cc run --queue=QUEUE --scheduler=SCHEDULER
                cc remove --queue=QUEUE --job=JOB
                cc remove --queue=QUEUE
                cc list --queue=QUEUE
                cc start
                cc stop
                cc doc
                cc test
                cc temperature
. . .
```

This code can be found here

Part of the code implementation of the above CLI:

```
class Queues:
    .....
    The Queues data structure is a structure that holds all of the queues
    with their corresponding names. It is a meta-queue, essentially. The queues
    class will be a dictionary of dictionaries of jobs, which are
    job names and commands.
    An example command would likely look like:
        cms cc queues list --queues=ab
    .....
    def __init__(self, database='yamldb'):
        .....
        Initializes the giant queue structure.
        Default database is yamldb
        :param name: name of the structure
        :return: creates the queues structure
        .....
        if database.lower() == 'yamldb':
            from cloudmesh.cc.db.yamldb.database import Database as QueueDB
            self.filename = path_expand("~/.cloudmesh/queue/queue")
```

This code can be found on GitHub

4.5.2 Cloudmesh StopWatch 🖓

- Using timers in python
- Using cloudmesh.common.StopWatch
- Create benchmarkes from StopWatch

Improve the documentation of Cloudmesh StopWatch if needed

StopWatch Documentation

Please be reminded that we could develop a program that read the documentation form the docstring Then we can save it to a file, so we could autogenerate the md file from the docstring.

4.5.3 How to Set Up Browser Defaults on Windows 🖓

4.5.3.1 Changing Default Browser

- 1. Press the Windows key and type Default apps, then press Enter.
- 2. Change Web browser to your desired browser.

4.5.3.2 Changing Default Search Engine Changing your search engine depends on the browser you are using. If you are using a fresh install of Windows, then the default browser is Microsoft Edge.

4.5.3.2.1 Microsoft Edge Edge's default search engine is Bing.

- 1. In Microsoft Edge, click the three dots in the top-right corner and then click Settings at the bottom.
- 2. On the left-hand side, click Privacy, search, and services. Scroll all the way to the bottom and click Address bar and search.
- 3. Lastly, change Search engine used in the address bar from Bing to Google (or whichever engine you desire).

4.5.3.2.2 Google Chrome Chrome's default search engine is Google.

- 1. In Chrome, click the three dots in the top-right corner and then click on Settings.
- 2. On the left-hand side, click Search engine .
- 3. Change Google to your desired search engine.

4.5.3.2.3 Firefox Firefox's default search engine is Google.

- 1. In Firefox, click the horizontal three lines (hamburger menu) in the top-right corner.
- 2. Click on Search on the left-hand side.
- 3. Change Default Search Engine from Google to your desired search engine.

4.5.3.2.4 Opera Opera's default search engine is Google.

- 1. In Opera, click the horizontal three lines with sliders (hamburger menu).
- 2. Scroll down and click on Go to full browser settings.
- 3. Scroll down to Search engine and change Google Search to your desired search engine.

4.5.4 CLOUDMESH WORKFLOW

see cloudmesh.cmd5

• Cloudmesh-CMD File

4.5.4.2 Cloudmesh-cc Workflow The documentation has been completely rewritten and is now available at:

https://cloudmesh.github.io/cloudmesh-cc/

4.5.4.3 Queue Data Structure () The queue data structure is a data structure that was built for cloudmesh, a cloud computing platform around which this documentation is based. The queue module is not a queue like the built-in python module. The built-in python module lines up the data in the correct order and implements the push and pop methods correctly.

The queue structure in the cloudmesh GitHub is a data structure that creates jobs, lines up the jobs in a queue, then places that queue into a larger queues data structure. This makes it so that a user could add jobs to a queue, then add that queue to a list of queues and then run those queues.

This module was built with the intent of allowing researchers to run jobs (with are their experimental tests) on multiple devices and report those jobs back.

4.5.4.3.1 Location The code for this project is located on GitHub. Please feel free to clone and download and use for your own purposes.

4.5.4.3.2 Installation To install this module, simply download the GitHub repository and utilize the correct import statement that you need in order to make this work in the directory you are working in.

4.5.4.3.3 Contents In the queue module there are three different classes.

Job

The Job class is an object that creates the job. There are a few things that the objects holds.

Fields:

It has the fields: name, user, label, command, status, output, output_file, error_file, error, kind, progress, created, and modified. Each of these fields represents necessary information about the job, especially the command. If there is a .sh file that you would like to run as opposed to a single command, the command could be to run that .sh file!

Methods:

In the job module, there are a few methods to assist in leveraging the power of the queue. These methods are: str, dict, set, update, run, and get_progress. The implementations of these methods can be found on GitHub. Please review to understand how to utilize these for your program!

Queue

The Queue class is a class that allows users to add jobs and then puts those jobs into a dictionary structure with the name of the job followed by the job itself.

Queues

4.5.4.4 Databases Program () The database program is a selection of different implementations that allow a user to save objects and variables in specific files through which they can access these files and utilize them for the proper use cases.

There are two different database examples that have been created: yamldb and shelve.

4.5.4.4.1 Location These programs are located in cloudmesh-cc, which is available on GitHub. You can download and utilize these programs to your liking.

4.5.4.4.2 Contents Inside each of the database programs are many functions that make it easy for a user to utilize the program to their needs.

In yamldb: __init__, save, load, remove, get, get_queue, get_job, __setitem__,
__str__, clear, queues, and info.

In shelve: __init__, queues, filename, shelvename, info, load, save, close, remove, get,
getitem, set, __setitem__, __str__, delete, __delitem__, clear, and len

4.5.4.4.3 Initialization The typical use case for these databases is to add it to another object class so that that class can be saved to a database and accessed for testing and for scripting implementation.

In order to do so, the database should be introduced in the initialization of the object:

```
from cloudmesh.cc.db.yamldb.database import Database as QueueDB
# from cloudmesh.cc.db.shelve.database import Database as QueueDB
class Queues:
    def __init__(self, filename=None):
        """
        Initializes the queue structure.
        """
```

```
if filename is None:
    filename = "~/.cloudmesh/queue/queue.yamldb"
self.db = QueueDB(filename=filename)
self.counter = 0
```

This code can be access on GitHub

So now the database can be called from within the object as well as outside the object (i.e. in other programs where a Queues object has been created)!.

4.5.4.4.4 Usage It is super simple to use the databases. They are implemented in a way so as to maximize user ease and capability. First of all, it is necessary to use the above methods for each of the two databases that were implemented. These methods allow for ease of access. In the Queues class that was implemented, there are a few methods that draw upon this database. We will explore them.

```
def save(self):
    """
    save the queue to persistent storage
    """
    self.db.save()
def load(self):
    self.db.load()
```

This code can be accessed on GitHub.

As you can see, the save and load methods have been implemented. After the instantiation of the database in the previous code block, the user can call the database using self.db to access it. Loading the database simply pulls the data from the file and loads it in a dictionary-like format. Saving the database allows you to push changes that you have made back into the database.

```
def info(self):
    return self.db.info()
```

This code can be accessed on GitHub.

This command simply accessed the information provided by the database (ie. what is being stored in the database).

```
@property
    def queues(self):
        return self.db.queues
```

```
@property
def config(self):
    return self.db.data['config']
```

This code can be accessed on GitHub.

This code showcases a special way that the database can be used. In this queues class, we have a way to access specific objects that we have stored into the database. In the database, we have set a characteristic to be queues, which holds a dictionary of queue names to queues of jobs. In creating this special method, we allow programmers to very quickly and easily grab the queues that they need. This could be extrapolated, too. There could be another method that looks for only a queue. It could be implemented like so:

```
def queue(self, name):
    """
    return the whole queue that the name in the parameter specifies
    """
    queues = self.queues()
    queue = queues[name]
    return queue
```

This code is not accessible anywhere, as it was written as a (untested) pseudo-code specifically for the discussion in this section of the documentation.

As you can see, this would allow a programmer not only access to the whole queues structure, but it would also allow access to a specific queue!

4.5.4.4.5 Extension These are not the only types of files that can be used to save data. There could be other modules out there that exist for the purpose of implementation in another fashion.

4.5.4.5 Running Tensorflow on Rivanna 💭

4.5.4.5.1 Table of Contents

- Rivanna
- Running Tensorflow on Rivanna
- Run Python MPI Programs on Rivanna
- Setting Parameters while Running mnist Jobs

- Learn how to properly install Tensorflow on Rivanna using conda
- Learn how to load a singularity module of Tensorflow
- Learn how to run the GPU container image of Tensorflow through sbatch

4.5.4.5.2 Activating Rivanna Once you have Rivanna installed locally on your computer with your account set up, if you have Cloudmesh installed, you can simply connect to Rivanna on GitBash using the following commands. Make sure to run the terminal as Admin or else the first command won't work.

\$ cms vpn connect
\$ ssh rivanna

4.5.4.5.3 Installing Tensorflow Using Conda Generally in Rivanna, Python is run in a Conda environment. Because of that, Tensorflow can be installed using Conda using the command:

\$rivanna conda install -n ENV3 tensorflow-gpu cudatoolkit

4.5.4.5.4 Loading and Running Singularity Alternatively, you can use Rivanna's built-in containers for running Tensor- flow called Singularity. You can load using the following commands:

rivanna\$ module load singularity rivanna\$ module load tensorflow/2.8.0

This will give you this output which you can run:

To execute the default application inside the container, run: singularity run --nv \$CONTAINERDIR/tensorflow-2.8.0.sif

You should get instructions on how to now run this Tensorflow container. The <u>--nv</u> flag is to load the NVIDIA graphic driver for use of GPU.

4.5.4.5.5 Copying Tensorflow Container Image Before running Tensorflow on any file, you first want to copy the Tensorflow container image into your personal home directory. This can be done by typing in the following commands:

```
rivanna$ module load singularity
rivanna$ module load tensorflow/2.8.0
rivanna$ cd $CONTAINERDIR
rivanna$ cp tensorflow-2.8.0.sif $HOME
```

The first two commands loads you into the Singularity Tensorflow container. You are then directed to the default location of the container image and then you copy the image file into your home directory.

4.5.4.5.6 Running the Singularity Shell Before you run this shell, make sure to install cloudmesh in the image. Run the following commands:

```
rivanna$ singularity shell $HOME/tensorflow-2.8.0.sif
Singularity> pip install cloudmesh-common
```

4.5.4.5.7 Running Slurm Jobs Slurm jobs can be run through the Tensorflow container through sbatch scripts. Various arguments such as the job, output, GPU, time, account, etc. can be specified as shown in the example script below.

```
#!/bin/sh
#SBATCH --job-name=mydemojob
#SBATCH --output=%u-%j.out
#SBATCH --error=%u-%j.err
#SBATCH --partition=gpu
#SBATCH --gres=gpu:k80:1
#SBATCH --cpus-per-task=1
#SBATCH --mem=4GB
#SBATCH -t 00:01:00
#SBATCH -A bii_dsc_community
echo "# cloudmesh status=running progress=1 pid=$SLURM_JOB_ID"
module purge
module load singularity
containerdir=$HOME
singularity run --nv $containerdir/tensorflow-2.8.0.sif mydemojob.py
echo " cloudmesh status=done progress=100 pid=$SLURM_JOB_ID"
```

#

4.5.4.5.8 Examples from GitHub Here we demonstrate how to run various examples from our GitHub:

Log into Rivanna

```
$ ssh rivanna
$rivanna: git clone https://github.com/cybertraining-dsc/reu2022.git
$rivanna: cd reu2022/code/deeplearning
$rivanna: bash test1.sh
```

Some users may want to generate modified ipynb 's to generate their Python programs. In order to do so, you can simply say:

\$rivanna: make all

Also, if you do not want to modify them, they are already included.

In case you would like to run an individual example, such as <code>mnist_autoencoder</code>, you can it in the following way:

```
$rivanna: cd cm/reu2022/code/deeplearning
$rivanna: sbatch --gres:gpu:k80:1 mnist_autoencoder.sh
```

In case you would like to do Papermill, which allows you to run a Python notebook directly without GUI, you can do it as follows:

```
$rivanna: pip install papermill
$rivanna: sbatch --gres:gpu:k80:1 mnist_autoencoder_papermill.sh
```

To see the results, all results are being prepended with a # csv string. You can fgrep the result as follows:

```
$rivanna: fgrep '# csv' mnist_autoencoder_output.py
```

4.5.4.5.9 Links

- Tensorflow[48]
- Rivanna Tensorflow[49]
- Rivanna Software Container[50]

5 INTRODUCTION TO DEEP LEARNING

5.1 AI 🗘

• Organizes the AI information

Missing modules, tutorials

- start jupyter on local computer
- start jupyter on rivanna
- graphs: mermaid: https://cybertraining-dsc.github.io/docs/modules/sample/mermaid/
- Update to https://cybertraining-dsc.github.io/docs/modules/mnist-reu/ See also the code in mlcommons

5.1.1 Analytics services

https://cybertraining-dsc.github.io/docs/modules/cloudmesh-rest/

5.1.2 Reports

- Projects will be deterimined with the help of GRegor. THIS REU everyone has to do two projects.
 - 1. Using FAsta PY dealing with cyberinfrastructure (THis pays you)
 - 2. one dealing with AI do apply the first project
- Project Proposal: https://cybertraining-dsc.github.io/docs/report/project-faq/
- https://cybertraining-dsc.github.io/docs/report/other/
- https://cybertraining-dsc.github.io/docs/report/2021/
- https://cybertraining-dsc.github.io/docs/report/2021-reu/

5.1.3 Modules

- Students can pick a variety of modules in case they hav gaps:
 - Over 300 https://cybertraining-dsc.github.io/docs/modules/list/
 - 7 additional MOdules about DevOps https://cybertraining-dsc.github.io/docs/modules/d evops/

5.1.4 Course material

https://cybertraining-dsc.github.io/docs/courses/ai-first/

5.1.4.1 Introduction to AI-Driven Digital Transformation

- <ttps://cybertraining-dsc.github.io/docs/modules/ai-first/2021/course_lectures/>
- 1. Introduction
- 2. Google Colab
- 3.

Other material

- https://cybertraining-dsc.github.io/docs/courses/
- 2020: https://cybertraining-dsc.github.io/docs/modules/bigdataapplications/2020/
- 2019 https://cybertraining-dsc.github.io/docs/modules/bigdataapplications/2019/

5.1.5 Publistaions

https://cybertraining-dsc.github.io/docs/pub/

5.2 OVERVIEW

5.2.1 2022 Lecture on AI-First Deep Learning 💭

Big Data Applications are an important topic that have impact in academia and industry.

An version from an earlier similar lecture is available at the following link

• 2021 Version.

5.2.2 Overview to AI-Driven Digital Transformation 🖓

An introductory Lecture with Motivation for Big Data Applications and Analytics Class.

This Lecture is recorded in 8 parts and gives an introduction and motivation for the class. This and other lectures in class are divided into "bite-sized lessons" from 5 to 30 minutes in length; that is why it has 8 parts.

The lecture explains what students might gain from the class even if they end up with different types of jobs from data engineering, software engineering, data science or a business (application) expert. It stresses that we are well into a transformation that impacts industry research and the way life is lived. This transformation is centered on using the digital way with clouds, edge computing and deep learning giving the implementation. This "AI-Driven Digital Transformation" is as transformational as the Industrial Revolution in the past. We note that deep learning dominates most innovative AI replacing several traditional machine learning methods.

The slides for this course can be found at E534-Fall2020-Introduction

5.2.2.1 Big Data Applications and Analytics (A) This lesson describes briefly the trends driving and consequent of the AI-Driven Digital Transformation. It discusses the organizational aspects of the class and notes the two driving trends are clouds and AI. Clouds are mature and a dominant presence. AI is still rapidly changing and we can expect further major changes. The edge (devices and associated local fog computing) has always been important but now more is being done there.

• Youtube Video: http://youtube.com/watch?v=nCbJ-2kKf0s

5.2.2.2 Big Data Applications and Analytics (B) This lesson goes through the technologies (AI Edge Cloud) from 2008-2020 that are driving the AI-Driven Digital Transformation. we use Hype Cycles and Priority Matrices from Gartner tracking importance concepts from the Innovation Trigger, Peak of Inflated Expectations through the Plateau of Productivity. We contrast clouds and AI.

• Youtube Video: http://youtube.com/watch?v=QN-rPFbUAwc

5.2.2.3 Big Data Applications and Analytics (C)

- This gives illustrations of sources of big data.
- It gives key graphs of data sizes, images uploaded; computing, data, bandwidth trends;
- Cloud-Edge architecture.
- Intelligent machines and comparison of data from aircraft engine monitors compared to Twitter
- Youtube Video: http://youtube.com/watch?v=b_HeufZSEaE

- Multicore revolution
- Overall Global AI and Modeling Supercomputer GAIMSC
- Moores Law compared to Deep Learning computing needs
- Intel and NVIDIA status
- Youtube Video: http://youtube.com/watch?v=NxoOe5XKGyE

5.2.2.5 Big Data Applications and Analytics (E)

- Applications and Analytics
- Cyberinfrastructure, e-moreorlessanything.
- LHC, Higgs Boson and accelerators.
- Astronomy, SKA, multi-wavelength.
- Polar Grid.
- Genome Sequencing.
- Examples, Long Tail of Science.
- Wired's End of Science; the 4 paradigms.
- More data versus Better algorithms.
- Youtube Video: http://youtube.com/watch?v=C_jk161mQ_s

5.2.2.6 Big Data Applications and Analytics (F)

- Clouds, Service-oriented architectures, HPC High Performance Computing, Apace Software
- DIKW process illustrated by Google maps
- Raw data to Information/Knowledge/Wisdom/Decision Deluge from the EdgeInformation/Knowledge/Wisdom/Decision Deluge
- Parallel Computing
- Map Reduce
- Youtube Video: http://youtube.com/watch?v=V_iqzUXCcyg

5.2.2.7 Big Data Applications and Analytics (G) Al grows in importance and industries transform with

- Core Technologies related to
- New "Industries" over the last 25 years
- Traditional "Industries" Transformed; malls and other old industries transform
- Good to be master of Cloud Computing and Deep Learning
- AI-First Industries,
- Youtube Video: http://youtube.com/watch?v=DAJw6mitjao

5.2.2.8 Big Data Applications and Analytics (H)

- Job trends
- Become digitally savvy so you can take advantage of the AI/Cloud/Edge revolution with different jobs
- The qualitative idea of Big Data has turned into a quantitative realization as Cloud, Edge and Deep Learning
- Clouds are here to stay and one should plan on exploiting them
- Data Intensive studies in business and research continue to grow in importance
- Youtube Video: http://youtube.com/watch?v=nsgPI45XJlw

5.2.3 Overview AI-First Engineering Cybertraining 💭

An introductiory Lecture about the class. It was given in 2021 and is still relevant. Introductory Lecture

• Youtube Video: http://youtube.com/watch?v=mjWXGR9NcHU

Assignment: please note the differences between the previous class and write them down and create a pull reuest to add them here.

5.2.3.1 Assignments

- Assignment Github: Get a github.com account
- Assignment Slack: Enroll in our slack (add link here)
- Assignment Github reu2022: add link here
- Post a 2-3 paragraph **formal** Bio in ere REU2022 Github repositorys

- Add links to the Bios and gitrepo here:
 - Name, linkto bio, link to gitrepor

5.2.3.2 Introduction An introductiory lecture is available:

- Slides: IntroDLOpt: Introduction to Deep Learning and Optimization
- Youtube Video: http://youtube.com/watch?v=PCZZQ93xmGI_002

The slides and videos for deep learning are available:

- Introduction to Deep Learning and Optimization
 - Slides: Introduction to Deep Learning and Optimization
 - Youtube Video: http://youtube.com/watch?v=PCZZQ93xmGI_002
- Overview of Optimization
 - Slides: Overview of Optimization
 - Youtube Video: http://youtube.com/watch?v=kFBqj4U9XyA
- Deep Learning Some examples
 - Slides: Deep Learning Some examples
 - Youtube Video: http://youtube.com/watch?v=sJ-9YjgS35w
- Components of Deep Learning Systems
 - Slides: Components of Deep Learning
 - Youtube Video: http://youtube.com/watch?v=z9-OFr__Y-w
- Summary of Types of Deep Learning Systems
 - Slides: Types of Deep Learning Networks: Summary
 - Youtube Video: http://youtube.com/watch?v=4Ma3SFFLhYY

5.2.3.3 Deep Learning Examples, 1 We discuss deep learning examples covering first half of slides DLBasic: Deep Learning - Some examples

• Youtube Video: http://youtube.com/watch?v=whzCJUKJzN4

5.2.3.4 Deep Learning Examples, 2 plus Components We continue with deep learning examples Deep Learning: More Examples and Components

Youtube Video: http://youtube.com/watch?v=tfDdb8mSL98

5.2.3.5 Deep Learning Networks plus Overview of Optimization Next, we cover two topics

- Deep Learning Networks Types of Deep Learning Networks: Summary
- General Issues in Optimization with presentation Presentation on Optimization
- Youtube Video: http://youtube.com/watch?v=hGUDURDMet8

5.2.3.6 Deep Learning and AI Examples in Health and Medicine 2/3rds of the presentation AI First Scenarios: Health and Medicine are covered in

- Youtube Video: http://youtube.com/watch?v=Efbvy4tAcNg
- the last 1/3rd of the presentation AI First Scenarios: Health and Medicine

as ell as

- Al First Scenarios Space
- and a start to AI First Scenarios Energy

are covered in the video

• Youtube Video: http://youtube.com/watch?v=EG6OH1cUN8c

5.2.3.7 Deep Learning and AI Examples

- We finished AI First Scenarios Energy
- We started AI First Scenarios: Banking and FinTech
- Youtube Video: http://youtube.com/watch?v=_mIBVwLLTmI

5.2.3.8 Deep Learning and AI Examples

- We ended AI First Scenarios: Banking and FinTech
- We started AI Scenarios in Mobility and Transportation Systems
- Youtube Video: http://youtube.com/watch?v=_TbKRO5Tw4o

5.2.3.9 GitHub for the Class project

• We explain how to use GitHub for the class project. A video is available on YouTube. Please note that we only uploaded the relevant portion. The other half of the lecture went into individual comments for each student which we have not published. The comments are included in the GitHub repository.

Note project guidelines are given here

• Youtube Video: http://youtube.com/watch?v=PBMPWjavraU

5.2.3.10 The Final Project

- We described the gidelines of final projects in Slides
- We were impressed by the seven student presentations describing their chosen project and approach.
- Youtube Video: http://youtube.com/watch?v=gUhZdkke9A8

5.2.3.11 Practical Issues in Deep Learning for Earthquakes We used our research on Earthquake forecasting, to illustrate deep learning for Time Series with slides

• Youtube Video: http://youtube.com/watch?v=nQBr2347Xqg

5.2.3.12 Practical Issues in Deep Learning for Earthquakes We continued discussion that illustrated deep learning for Time Series with the same slides as last week

• Youtube Video: http://youtube.com/watch?v=jM2OJYDQE-Y

5.3 APPLICATIONS

5.3.1 Introduction to AI in Health and Medicine 🔿

This module discusses AI and the digital transformation for the Health and Medicine Area with a special emphasis on COVID-19 issues. We cover both the impact of COVID and some of the many activities that are addressing it. Parts B and C have an extensive general discussion of AI in Health and Medicine

The complete presentation is available at Google Slides while the videos are a YouTube playlist

5.3.1.1 Introduction (A) This lesson describes some overarching issues including the

- Summary in terms of Hypecycles
- Players in the digital health ecosystem and in particular role of Big Tech which has needed AI expertise and infrastructure from clouds to smart watches/phones
- Views of Pataients and Doctors on New Technology

- Role of clouds. This is essentially assumed throughout presentation but not stressed.
- Importance of Security
- Introduction to Internet of Medical Things; this area is discussed in more detail later in preserntation
- Slides
- Youtube Video: http://youtube.com/watch?v=08ZbpK5oe3A

5.3.1.2 Diagnostics (B) This highlights some diagnostic appliocations of AI and the digital transformation. Part C also has some diagnostic coverage – especially particular applications

- General use of AI in Diagnostics
- Early progress in diagnostic imaging including Radiology and Opthalmology
- AI In Clinical Decision Support
- Digital Therapeutics is a recognized and growing activity area
- Slides
- Youtube Video: http://youtube.com/watch?v=7-ULGwApFzM

5.3.1.3 Examples (C) This lesson covers a broad range of AI uses in Health and Medicine

- Flagging Issues requirng urgent attentation and more generally AI for Precision Merdicine
- Oncology and cancer have made early progress as exploit AI for images. Avoiding mistakes and diagnosing curable cervical cancer in developing countries with less screening.
- Predicting Gestational Diabetes
- cardiovascular diagnostics and AI to interpret and guide Ultrasound measurements
- Robot Nurses and robots to comfort patients
- Al to guide cosmetic surgery measuring beauty
- AI in analysis DNA in blood tests
- AI For Stroke detection (large vessel occlusion)
- Al monitoring of breathing to flag opioid-induced respiratory depression.
- AI to relieve administration burden including voice to text for Doctor's notes
- Al in consumer genomics

- Areas that are slow including genomics, Consumer Robotics, Augmented/Virtual Reality and Blockchain
- Al analysis of information resources flags probleme earlier
- Internet of Medical Things applications from watches to toothbrushes
- Slides
- Youtube Video: http://youtube.com/watch?v=Sp9h_-bf_I8

5.3.1.4 Impact of Covid-19 (D) This covers some aspects of the impact of COVID -19 pandedmic starting in March 2020

- The features of the first stimulus bill
- Impact on Digital Health, Banking, Fintech, Commerce bricks and mortar, e-commerce, groceries, credit cards, advertising, connectivity, tech industry, Ride Hailing and Delivery,
- Impact on Restaurants, Airlines, Cruise lines, general travel, Food Delivery
- Impact of working from home and videoconferencing
- The economy and
- The often positive trends for Tech industry
- Slides
- Youtube Video: http://youtube.com/watch?v=E6EIZr6L7x4

5.3.1.5 Covid-19 and Recession (E) This is largely outdated as centered on start of pandemic induced recession. and we know what really happenmed now. Probably the pandemic accelerated the transformation of industry and the use of AI.

- Slides
- Youtube Video: http://youtube.com/watch?v=fGdyC3SVA1s

5.3.1.6 Tackling Covid-19 (F) This discusses some of AI and digital methods used to understand and reduce impact of COVID-19

- Robots for remote patient examination
- computerized tomography scan + AI to identify COVID-19
- Early activities of Big Tech and COVID

- Other early biotech activities with COVID-19
- Remote-work technology: Hopin, Zoom, Run the World, FreeConferenceCall, Slack, GroWrk, Webex, Lifesize, Google Meet, Teams
- Vaccines
- Wearables and Monitoring, Remote patient monitoring
- Telehealth, Telemedicine and Mobile Health
- Slides
- Youtube Video: http://youtube.com/watch?v=iPDNxRS7JmI

5.3.1.7 Data and Computational Science and Covid-19 (G) This lesson reviews some sophisticated high performance computing HPC and Big Data approaches to COVID

- Rosetta volunteer computer to analyze proteins
- COVID-19 High Performance Computing Consortium
- Al based drug discovery by startup Insilico Medicine
- Review of several research projects
- Global Pervasive Computational Epidemiology for COVID-19 studies
- Simulations of Virtual Tissues at Indiana University available on nanoHUB
- Slides
- Youtube Video: http://youtube.com/watch?v=02emPIxf_IA

5.3.1.8 Screening Drug and Candidates (H) A major project involving Department of Energy Supercomputers

- General Structure of Drug Discovery
- DeepDriveMD Project using AI combined with molecular dynamics to accelerate discovery of drug properties
- Slides
- Youtube Video: http://youtube.com/watch?v=tbZ_ObdOoFA

5.3.1.9 Areas for Covid19 Study and Pandemics as Complex Systems (I)

- Slides
- Possible Projects in AI for Health and Medicine and especially COVID-19
- Pandemics as a Complex System
- Al and computational Futures for Complex Systems
- Youtube Video: http://youtube.com/watch?v=F6vykp-gKoI

5.3.2 Mobility (Industry) 🖓

This section discusses the mobility in Industry

- 1. Industry being transformed by a) Autonomy (AI) and b) Electric power
- 2. Established Organizations cannot change
 - General Motors (employees: 225,000 in 2016 to around 180,000 in 2018) finds it hard to compete with Tesla (42000 employees)
 - Market value GM was half the market value of Tesla at the start of 2020 but is now just 11% October 2020
 - GM purchased Cruise to compete
 - Funding and then buying startups is an important "transformation" strategy
- 3. Autonomy needs Sensors Computers Algorithms and Software
 - Also experience (training data)
 - Algorithms main bottleneck; others will automatically improve although lots of interesting work in new sensors, computers and software
 - Over the last 3 years, electrical power has gone from interesting to "bound to happen"; Tesla's happy customers probably contribute to this
 - Batteries and Charging stations needed
- Summary Slides
- YouTube Video: http://youtube.com/watch?v=1UYAq4VfpJ4_002
- Full Slide Deck

5.3.2.1 Introduction (A)

- Futures of Automobile Industry, Mobility, and Ride-Hailing
- Self-cleaning cars

- Medical Transportation
- Society of Automotive Engineers, Levels 0-5
- Gartner's conservative View
- Youtube Video: http://youtube.com/watch?v=cUn4FbJdkjY

5.3.2.2 Self Driving AI (B)

- Image processing and Deep Learning
- Examples of Self Driving cars
- Road construction Industry
- Role of Simulated data
- Role of AI in autonomy
- Fleet cars
- 3 Leaders: Waymo, Cruise, NVIDIA
- Youtube Video: http://youtube.com/watch?v=LgS05R23q3M

5.3.2.3 General Motors View (C)

- Talk by Dave Brooks at GM, "AI for Automotive Engineering"
- Zero crashes, zero emission, zero congestion
- GM moving to electric autonomous vehicles
- Youtube Video: http://youtube.com/watch?v=pybTudmAod0

5.3.2.4 Self Driving Snippets (D)

- Worries about and data on its Progress
- Tesla's specialized self-driving chip
- Some tasks that are hard for AI
- Scooters and Bikes
- Youtube Video: http://youtube.com/watch?v=-YzXTfeVZMw

5.3.2.5 Electrical Power (E)

- Rise in use of electrical power
- Special opportunities in e-Trucks and time scale
- Future of Trucks
- Tesla market value
- Drones and Robot deliveries; role of 5G
- Robots in Logistics
- Youtube Video: http://youtube.com/watch?v=EwPsb_izTTo

• # Space and Energy

This section discusses the space and energy.

- 1. Energy sources and AI for powering Grids.
- 2. Energy Solution from Bill Gates
- 3. Space and AI
- Full Slide Deck

5.3.2.6 Energy (A)

- Distributed Energy Resources as a grid of renewables with a hierarchical set of Local Distribution Areas
- Electric Vehicles in Grid
- Economics of microgrids
- Investment into Clean Energy
- Batteries
- Fusion and Deep Learning for plasma stability
- Al for Power Grid, Virtual Power Plant, Power Consumption Monitoring, Electricity Trading
- Youtube Video: http://youtube.com/watch?v=rdGWniEHpT8
- Slides

5.3.2.7 Clean Energy startups from Bill Gates (B)

- 26 Startups in areas like long-duration storage, nuclear energy, carbon capture, batteries, fusion, and hydropower ...
- The slide deck gives links to 26 companies from their website and pitchbook which describes their startup status (#employees, funding)
- It summarizes their products
- Youtube Video: http://youtube.com/watch?v=rgq99JSKoe8
- Slides

5.3.2.8 Space (C)

- Space supports AI with communications, image data and global navigation
- AI Supports space in AI-controlled remote manufacturing, imaging control, system control, dynamic spectrum use
- Privatization of Space SpaceX, Investment
- 57,000 satellites through 2029
- Youtube Video: http://youtube.com/watch?v=bpXNLFa7piY
- Slides

5.3.3 Al In Banking 🗘

This section discusses AI in Banking

In this lecture, AI in Banking is discussed. Here we focus on the transition of legacy banks towards AI based banking, real world examples of AI in Banking, banking systems and banking as a service.

Slides

5.3.3.1 The Transition of legacy Banks (A)

- 1. Types of AI that is used
- 2. Closing of physical branches
- 3. Making the transition
- 4. Growth in Fintech as legacy bank services decline
- Youtube Video: http://youtube.com/watch?v=h5xR8uisfSc

5.3.3.2 FinTech (B)

- 1. Fintech examples and investment
- 2. Broad areas of finance/banking where Fintech operating
- Youtube Video: http://youtube.com/watch?v=k0o74_e7xec

5.3.3.3 Neobanks (C)

- 1. Types and Examples of neobanks
- 2. Customer uptake by world region
- 3. Neobanking in Small and Medium Business segment
- 4. Neobanking in real estate, mortgages
- 5. South American Examples
- Youtube Video: http://youtube.com/watch?v=DMS_h_qkpDk

5.3.3.4 The System (D)

- 1. The Front, Middle, Back Office
- 2. Front Office: Chatbots
- 3. Robo-advisors
- 4. Middle Office: Fraud, Money laundering
- 5. Fintech
- 6. Payment Gateways (Back Office)
- 7. Banking as a Service
- Youtube Video: http://youtube.com/watch?v=V6KuN0yZQws

5.3.3.5 Examples (E)

- 1. Credit cards
- 2. The stock trading ecosystem
- 3. Robots counting coins
- 4. Al in Insurance: Chatbots, Customer Support
- 5. Banking itself
- 6. Handwriting recognition
- 7. Detect leaks for insurance
- Youtube Video: http://youtube.com/watch?v=0uWDWfeLLuY

5.3.3.6 Banking as a Service (E)

- 1. Banking Services Stack
- 2. Business Model
- 3. Several Examples
- 4. Metrics compared among examples
- 5. Breadth, Depth, Reputation, Speed to Market, Scalability
- Youtube Video: http://youtube.com/watch?v=UYY0-OJltqQ

5.3.4 Transportation Systems 🖓

This section discusses the transportation systems

- 1. The ride-hailing industry highlights the growth of a new "Transportation System" TS a. For ride-hailing TS controls rides matching drivers and customers; it predicts how to position cars and how to avoid traffic slowdowns b. However, TS is much bigger outside ride-hailing as we move into the "connected vehicle" era c. TS will probably find autonomous vehicles easier to deal with than human drivers
- 2. Cloud Fog and Edge components
- 3. Autonomous AI was centered on generalized image processing
- 4. TS also needs AI (and DL) but this is for routing and geospatial time-series; different technologies from those for image processing
- Slides
- Youtube Video: http://youtube.com/watch?v=1UYAq4VfpJ4_002

5.3.4.1 Introduction (A)

- 1. "Smart" Insurance
- 2. Fundamentals of Ride-Hailing
- Youtube Video: http://youtube.com/watch?v=aRBi94QTyvQ

5.3.4.2 Components of a Ride-Hailing System (B)

- 1. Transportation Brain and Services
- 2. Maps, Routing,
- 3. Traffic forecasting with deep learning
- Youtube Video: http://youtube.com/watch?v=obUYIj4cNao
5.3.4.3 Different AI Approaches in Ride-Hailing (C)

- 1. View as a Time Series: LSTM and ARIMA
- 2. View as an image in a 2D earth surface Convolutional networks
- 3. Use of Graph Neural Nets
- 4. Use of Convolutional Recurrent Neural Nets
- 5. Spatio-temporal modeling
- 6. Comparison of data with predictions
- 7. Reinforcement Learning
- 8. Formulation of General Geospatial Time-Series Problem
- Youtube Video: http://youtube.com/watch?v=k9qFE5WdQWA

5.3.5 Commerce 🖓

This section discusses Commerce

• Slides

5.3.5.1 The Old way of doing things (A)

- 1. Al in Commerce
- 2. Al-First Engineering, Deep Learning
- 3. E-commerce and the transformation of "Bricks and Mortar"
- Youtube Video: http://youtube.com/watch?v=w07nShBHKRY

5.3.5.2 AI in Retail (B)

- 1. Personalization
- 2. Search
- 3. Image Processing to Speed up Shopping
- 4. Walmart
- Youtube Video: http://youtube.com/watch?v=Kqgbbrnaf1g

5.3.5.3 The Revolution that is Amazon (C)

- 1. Retail Revolution
- 2. Saves Time, Effort and Novelity with Modernized Retail
- 3. Looking ahead of Retail evolution

Youtube Video: http://youtube.com/watch?v=M1TQp1CcjZk

5.3.5.4 DLMalls e-commerce (D)

- 1. Amazon sellers
- 2. Rise of Shopify
- 3. Selling Products on Amazon
- Youtube Video: http://youtube.com/watch?v=kaZaxn5aHaE

5.3.5.5 Recommender Engines, Digital media (E)

- 1. Spotify recommender engines
- 2. Collaborative Filtering
- 3. Audio Modelling
- 4. DNN for Recommender engines
- Youtube Video: http://youtube.com/watch?v=pY1KZu7EOn0

5.4 CLOUD COMPUTING

5.4.1 Cloud Computing 🖓

Cloud Computing

- Full Slide Deck
- Youtube Video: http://youtube.com/watch?v=FV0r-Yf6zNk

5.4.1.1 Defining the Cloud

5.4.1.1.1 Definition Basic definition of cloud and two very simple examples of why virtualization is important

- 1. How clouds are situated wrt HPC and supercomputers
- 2. Why multicore chips are important
- 3. Typical data center

Youtube Video: http://youtube.com/watch?v=80E3oOVDmlQ

5.4.1.1.2 Service-oriented architectures Service-oriented architectures: Software services as Message-linked computing capabilities

- 1. The different aaS's: Network, Infrastructure, Platform, Software
- 2. The amazing services that Amazon AWS and Microsoft Azure have
- 3. Initial Gartner comments on clouds (they are now the norm) and evolution of servers; serverless and microservices
- 4. Gartner hypecycle and priority matrix on Infrastructure Strategies
- Youtube Video: http://youtube.com/watch?v=mzkFZApl_-4

5.4.1.1.3 Market Share

- 1. How important are they?
- 2. How much money do they make?
- Youtube Video: http://youtube.com/watch?v=jYfoNxIROqU

5.4.1.2 Virtualization Virtualization Technologies, Hypervisors and the different approaches

- 1. KVM Xen, Docker and Openstack
- Youtube Video: http://youtube.com/watch?v=Tqsx-sEPY6M

5.4.1.3 Cloud Infrastructure Comments on trends in the data center and its technologies

- 1. Clouds physically across the world
- 2. Green computing
- 3. Fraction of world's computing ecosystem in clouds and associated sizes
- 4. An analysis from Cisco of size of cloud computing
- Youtube Video: http://youtube.com/watch?v=6ncp-UTYk-4

Gartner hypecycle and priority matrix on Compute Infrastructure

- 1. Containers compared to virtual machines
- 2. The emergence of artificial intelligence as a dominant force
- Youtube Video: http://youtube.com/watch?v=R0Sk1rAS20M

5.4.1.4 Cloud Software HPC-ABDS with over 350 software packages and how to use each of 21 layers

- 1. Google's software innovations
- 2. MapReduce in pictures
- 3. Cloud and HPC software stacks compared
- 4. Components need to support cloud/distributed system programming
- Youtube Video: http://youtube.com/watch?v=gMAA9y8khMM

5.4.1.5 Cloud Applications Clouds in science where area called cyberinfrastructure; the science usage pattern from NIST

- 1. Artificial Intelligence from Gartner
- Youtube Video: http://youtube.com/watch?v=sAbYkZHD81U

Characterize Applications using NIST approach

- 1. Internet of Things
- 2. Different types of MapReduce
- Youtube Video: http://youtube.com/watch?v=YaPg-OOlkdw

5.4.1.6 Parallel Computing Analogies

5.4.1.6.1 Parallel Computing in pictures

- 1. Some useful analogies and principles
- Youtube Video: http://youtube.com/watch?v=iqVHvQg851s

5.4.1.6.2 Real Parallel Computing Single Program/Instruction Multiple Data SIMD SPMD

- 1. Big Data and Simulations Compared
- 2. What is hard to do?
- Youtube Video: http://youtube.com/watch?v=7gD2yyTKatM

5.4.1.7 Storage Cloud data approaches

- 1. Repositories, File Systems, Data lakes
- Youtube Video: http://youtube.com/watch?v=NclbKQ-AChA

5.4.1.8 HPC and Clouds The Branscomb Pyramid

- 1. Supercomputers versus clouds
- 2. Science Computing Environments
- Youtube Video: http://youtube.com/watch?v=QTxYKhpVtDw

5.4.1.9 Comparison of Data Analytics with Simulation Structure of different applications for simulations and Big Data

- 1. Software implications
- 2. Languages
- Youtube Video: http://youtube.com/watch?v=6WmWE_7iB3w

5.4.1.10 The Future Gartner cloud computing hypecycle and priority matrix 2017 and 2019

- 1. Hyperscale computing
- 2. Serverless and FaaS
- 3. Cloud Native
- 4. Microservices
- 5. Update to 2019 Hypecycle
- Youtube Video: http://youtube.com/watch?v=1xH5ow5kOhc

Security and Blockchain

Youtube Video: http://youtube.com/watch?v=9AmVHEXv7gY

Fault Tolerance

Youtube Video: http://youtube.com/watch?v=VnkkCix3yEE

5.5 COLAB

5.5.1 Google Colab 🖓

Google Colab is a valuable tool for students that are not able to set up their computers for deep learning or have access to GPUs. It provides zero install access to GPUs through the Web browser.

We provide a lecture plus four Python notebooks

• First DL: Deep Learning MNIST Example Spring

- Welcome To Colaboratory
- Google Colab: A gentle introduction to Google Colab for Programming
- Python Warm Up
- MNIST Classification on Google Colab
- YouTube Video: http://youtube.com/watch?v=r-aD0oHVAdA

5.5.2 Python On Colab 🔿

Python Exercise on Google Colab

5.5.2.1 Python Exercise on Google Colab

- Open In Colab
- View in Github
- Download
- Python Textbook

In this exercise, we will take a look at some basic Python Concepts needed for day-to-day coding.

Youtube Video: http://youtube.com/watch?v=x1ICvWDlvB0

Check the installed Python version.

! python --version

Python 3.7.6

5.5.2.2 Simple For Loop

```
for i in range(10):
    print(i)
0
1
2
3
4
```

5.5.2.3 List list_items = ['a', 'b', 'c', 'd', 'e']

5.5.2.3.1 Retrieving an Element

list_items[2]

'c'

5.5.2.3.2 Append New Values

```
list_items.append('f')
list_items
['a', 'b', 'c', 'd', 'e', 'f']
```

5.5.2.3.3 Remove an Element

```
list_items.remove('a')
list_items
['b', 'c', 'd', 'e', 'f']
```

Youtube Video: http://youtube.com/watch?v=oudT4sRluwU

5.5.2.4 Dictionary

dictionary_items = {'a':1, 'b': 2, 'c': 3}

5.5.2.4.1 Retrieving an Item by Key

```
dictionary_items['b']
```

2

5.5.2.4.2 Append New Item with Key

```
dictionary_items['c'] = 4
dictionary_items
```

{'a': 1, 'b': 2, 'c': 4}

5.5.2.4.3 Delete an Item with Key

```
del dictionary_items['a']
dictionary_items
{'b': 2, 'c': 4}
```

5.5.2.5 Comparators

x = 10 y = 20 z = 30 x > y False x < z True z == x False

```
if x < z:
    print("This is True")
This is True
if x > z:
    print("This is True")
else:
    print("This is False")
This is False
```

• Youtube Video: http://youtube.com/watch?v=GKU6-SNZGQc

5.5.2.6 Arithmetic

5.5.2.7 Numpy

5.5.2.7.1 Create a Random Numpy Array

```
import numpy as np
a = np.random.rand(100)
a.shape
```

5.5.2.7.2 Reshape Numpy Array

```
b = a.reshape(10,10)
b.shape
(10, 10)
```

(100,)

5.5.2.7.3 Manipulate Array Elements

5.5.3 Deep Learning Colab Examples 🖓

5.5.3.1 Distributed Training for MNIST Distributed Training for MNIST

- Open In Colab
- Open in GitHub

• Download

In this lesson we discuss in how to create a simple IPython Notebook to solve an image classification problem with Multi Layer Perceptron with LSTM.

5.5.3.1.1 Pre-requisites Install the following Python packages

- 1. cloudmesh-installer
- 2. cloudmesh-common

```
pip3 install cloudmesh-installer
pip3 install cloudmesh-common
```

5.5.3.2 Sample MLP + LSTM with Tensorflow Keras

5.5.3.2.1 Import Libraries

5.5.3.2.2 Download Data and Pre-Process

```
StopWatch.start("data-load")
(x_train, y_train), (x_test, y_test) = mnist.load_data()
StopWatch.stop("data-load")
StopWatch.start("data-pre-process")
num_labels = len(np.unique(y_train))
```

```
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size])
x_test = np.reshape(x_test,[-1, image_size, image_size])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
StopWatch.stop("data-pre-process")

input_shape = (image_size, image_size)
batch_size = 128
units = 256
dropout = 0.2
```

5.5.3.2.3 Define Model Here we use the Tensorflow distributed training components to train the model in multiple CPUs or GPUs. In the Colab instance multiple GPUs are not supported. Hence, the training must be done in the device type 'None' when selecting the 'runtime type' from Runtime menu. To run with multiple-GPUs no code change is required. Learn more about distributed training.

```
StopWatch.start("compile")
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
  model = Sequential()
  # LSTM Layers
  model.add(LSTM(units=units,
                      input_shape=input_shape,
                      return_sequences=True))
  model.add(LSTM(units=units,
                      dropout=dropout,
                      return_sequences=True))
  model.add(LSTM(units=units,
                      dropout=dropout,
                      return_sequences=False))
  # MLP Layers
  model.add(Dense(units))
  model.add(Activation('relu'))
  model.add(Dropout(dropout))
  model.add(Dense(units))
  model.add(Activation('relu'))
  model.add(Dropout(dropout))
  # Softmax_layer
```

```
model.add(Dense(num_labels))
 model.add(Activation('softmax'))
 model.summary()
 plot_model(model, to_file='rnn-mnist.png', show_shapes=True)
 print("Number of devices: {}".format(strategy.num_replicas_in_sync))
 model.compile(loss='categorical_crossentropy',
          optimizer='sgd',
          metrics=['accuracy'])
StopWatch.stop("compile")
Model: "sequential_2"
_____
Layer (type) Output Shape Param #
_____
lstm_6 (LSTM)
                 (None, 28, 256)
                                 291840
                        -----
 ------
                  (None, 28, 256)
lstm_7 (LSTM)
                             525312
_____
lstm_8 (LSTM)
                 (None, 256)
                                 525312
------
                                  _____
           (None, 256)
dense_6 (Dense)
                                 65792
_____
activation_6 (Activation) (None, 256)
                                  0
      -----
dropout_4 (Dropout) (None, 256)
                                 0
   _____
             (None, 256)
dense_7 (Dense)
                                 65792
            _____
activation_7 (Activation) (None, 256)
                                  0
dropout_5 (Dropout) (None, 256)
                                 0
_____
dense_8 (Dense) (None, 10)
                                 2570
activation_8 (Activation) (None, 10)
                                _____
                                  0
_____
Total params: 1,476,618
Trainable params: 1,476,618
Non-trainable params: 0
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task
  \leftrightarrow :0/device:GPU:0',)
Number of devices: 1
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then
```

5.5.3.2.4 Train

```
StopWatch.start("train")
model.fit(x_train, y_train, epochs=30, batch_size=batch_size)
StopWatch.stop("train")
Epoch 1/30
↔ 0.2718
Epoch 2/30
↔ 0.4007
Epoch 3/30
↔ 0.5497
. . .
Epoch 28/30
\rightarrow 0.9640
Epoch 29/30
\leftrightarrow 0.9645
Epoch 30/30
\hookrightarrow 0.9661
```

5.5.3.2.5 Test

```
StopWatch.start("evaluate")
loss, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))
StopWatch.stop("evaluate")
```

```
StopWatch.benchmark()
79/79 [===============] - 3s 9ms/step - loss: 0.0898 - accuracy:
  ↔ 0.9719
Test accuracy: 97.2%
      \hookrightarrow
             | Status | Time | Sum | Start
Name
                                                      | tag |
  → Node | User | OS | Version
                                                       \hookrightarrow
| data-load | failed | 0.473 | 0.473 | 2021-03-07 11:34:03 |
                                                             → b39e0899c1f8 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
| data-pre-process | failed | 0.073 | 0.073 | 2021-03-07 11:34:03 |
                                                             → b39e0899c1f8 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
| compile | failed | 0.876 | 7.187 | 2021-03-07 11:38:05 |
                                                             → b39e0899c1f8 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
| train
             | failed | 229.341 | 257.023 | 2021-03-07 11:38:44 |
                                                             → b39e0899c1f8 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
| evaluate | failed | 2.659 | 4.25 | 2021-03-07 11:44:54 |
                                                            → b39e0899c1f8 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
+----+-
  \hookrightarrow
```

5.5.3.2.6 References

- 1. Advance Deep Learning with Keras
- 2. Distributed With Tensorflow
- 3. Keras with Tensorflow Distributed Training

5.5.3.3 MLP + LSTM with MNIST on Google Colab MLP + LSTM with MNIST on Google Colab

- Open In Colab
- Open in GitHub
- Download

In this lesson we discuss in how to create a simple IPython Notebook to solve an image classification problem with Multi Layer Perceptron with LSTM.

5.5.3.3.1 Pre-requisites Install the following Python packages

- 1. cloudmesh-installer
- 2. cloudmesh-common

```
pip3 install cloudmesh-installer
pip3 install cloudmesh-common
```

5.5.3.3.2 Sample MLP + LSTM with Tensorflow Keras

5.5.3.3.3 Import Libraries

5.5.3.3.4 Download Data and Pre-Process

```
StopWatch.start("data-load")
(x_train, y_train), (x_test, y_test) = mnist.load_data()
StopWatch.stop("data-load")
StopWatch.start("data-pre-process")
num_labels = len(np.unique(y_train))
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
```

```
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size])
x_test = np.reshape(x_test,[-1, image_size, image_size])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
StopWatch.stop("data-pre-process")

input_shape = (image_size, image_size)
batch_size = 128
units = 256
dropout = 0.2
```

5.5.3.3.5 Define Model

```
StopWatch.start("compile")
model = Sequential()
# LSTM Layers
model.add(LSTM(units=units,
                     input_shape=input_shape,
                     return_sequences=True))
model.add(LSTM(units=units,
                     dropout=dropout,
                     return_sequences=True))
model.add(LSTM(units=units,
                     dropout=dropout,
                     return_sequences=False))
# MLP Layers
model.add(Dense(units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
# Softmax_layer
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='rnn-mnist.png', show_shapes=True)
model.compile(loss='categorical_crossentropy',
              optimizer='sgd',
              metrics=['accuracy'])
StopWatch.stop("compile")
```

Model:	"sequential"
--------	--------------

Layer (type)	Output	Shape	Param #
lstm (LSTM)	(None,	28, 256)	291840
lstm_1 (LSTM)	(None,	28, 256)	525312
lstm_2 (LSTM)	(None,	256)	525312
dense (Dense)	(None,	256)	65792
activation (Activation)	(None,	256)	0
dropout (Dropout)	(None,	256)	0
dense_1 (Dense)	(None,	256)	65792
activation_1 (Activation)	(None,	256)	0
dropout_1 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	10)	2570
activation_2 (Activation)	(None,	10)	0 ======
Total params: 1,476,618 Trainable params: 1,476,618 Non-trainable params: 0			

5.5.3.3.6 Train

5.5.3.3.7 Test

```
StopWatch.start("evaluate")
loss, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))
StopWatch.stop("evaluate")
StopWatch.benchmark()
79/79 [===============] - 1s 7ms/step - loss: 2.2275 - accuracy:
  ↔ 0.3120
Test accuracy: 31.2%
\hookrightarrow
             | Status | Time | Sum | Start
                                                      | tag | Node
Name
           |User | OS | Version
  \hookrightarrow
                                                       \rightarrow
| data-load | failed | 0.61 | 0.61 | 2021-02-21 21:35:06 |
                                                             9810
  → ccb69d08 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
| data-pre-process | failed | 0.076 | 0.076 | 2021-02-21 21:35:07 |
                                                             9810
  → ccb69d08 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
              | failed | 6.445 | 6.445 | 2021-02-21 21:35:07 |
| compile
                                                             9810
  → ccb69d08 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
| train | failed | 17.171 | 17.171 | 2021-02-21 21:35:13 |
                                                             9810
  → ccb69d08 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
| evaluate | failed | 1.442 | 1.442 | 2021-02-21 21:35:31 |
                                                             9810
  → ccb69d08 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
     \hookrightarrow
```

5.5.3.3.8 References Orignal Source to Source Code

5.5.3.4 MNIST Classification on Google Colab MNIST Classification on Google Colab

- Open In Colab
- Open in GitHub
- Download

In this lesson we discuss in how to create a simple IPython Notebook to solve an image classification problem. MNIST contains a set of pictures

5.5.3.4.1 Import Libraries Note: https://python-future.org/quickstart.html

```
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.utils import to_categorical, plot_model
from keras.datasets import mnist
```

5.5.3.4.2 Warm Up Exercise

5.5.3.4.3 Pre-process data Load data

First we load the data from the inbuilt mnist dataset from Keras Here we have to split the data set into training and testing data. The training data or testing data has two components. Training features and training labels. For instance every sample in the dataset has a corresponding label. In Mnist the training sample contains image data represented in terms of an array. The training labels are from 0-9.

Here we say x_train for training data features and y_train as the training labels. Same goes for testing data.

11493376/11490434 [============] - Os Ous/step

5.5.3.4.4 Identify Number of Classes As this is a number classification problem. We need to know how many classes are there. So we'll count the number of unique labels.

```
num_labels = len(np.unique(y_train))
```

####Convert Labels To One-Hot Vector

Read more on one-hot vector.

```
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
```

5.5.3.4.5 Image Reshaping The training model is designed by considering the data as a vector. This is a model dependent modification. Here we assume the image is a squared shape image.

```
image_size = x_train.shape[1]
input_size = image_size * image_size
```

5.5.3.4.6 Resize and Normalize The next step is to continue the reshaping to a fit into a vector and normalize the data. Image values are from 0 - 255, so an easy way to normalize is to divide by the maximum value.

```
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test = np.reshape(x_test, [-1, input_size])
x_test = x_test.astype('float32') / 255
```

5.5.3.4.7 Create a Keras Model Keras is a neural network library. The summary function provides tabular summary on the model you created. And the plot_model function provides a grpah on the network you created.

```
# Create Model
# network parameters
batch_size = 4
hidden_units = 64
model = Sequential()
model.add(Dense(hidden_units, input_dim=input_size))
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='mlp-mnist.png', show_shapes=True)
Model: "sequential_1"
 _____
Layer (type) Output Shape Param #
_____
                (None, 512)
dense_5 (Dense)
                                 401920
_____
            (None, 10)
dense_6 (Dense)
                                5130
  -----
activation_5 (Activation) (None, 10) 0
_____
Total params: 407,050
Trainable params: 407,050
```

Non-trainable params: 0

Assignment: include image

5.5.3.4.8 Compile and Train A keras model need to be compiled before it can be used to train the model. In the compile function, you can provide the optimization that you want to add, metrics you expect and the type of loss function you need to use.

Here we use adam optimizer, a famous optimizer used in neural networks.

The loss funtion we have used is the categorical_crossentropy.

Once the model is compiled, then the fit function is called upon passing the number of epochs, traing data and batch size.

The batch size determines the number of elements used per minibatch in optimizing the function.

Note: Change the number of epochs, batch size and see what happens.

5.5.3.4.9 Testing Now we can test the trained model. Use the evaluate function by passing test data and batch size and the accuracy and the loss value can be retrieved.

MNIST_V1.0|Exercise: Try to observe the network behavior by changing the number of epochs, batch size and record the best accuracy that you can gain. Here you can record what happens when you change these values. Describe your observations in 50-100 words.

```
loss, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))
```

5.5.3.4.10 Final Note This programme can be defined as a hello world programme in deep learning. Objective of this exercise is not to teach you the depths of deep learning. But to teach you basic concepts that may need to design a simple network to solve a problem. Before running the whole code, read all the instructions before a code section.

5.5.3.4.11 Assignments

1. Solve Exercise MNIST_V1.0.

5.5.3.4.12 References Orignal Source to Source Code

5.5.3.5 MNIST With PyTorch MNIST With PyTorch

- Open In Colab
- Open in GitHub
- Download

In this lesson we discuss in how to create a simple IPython Notebook to solve an image classification problem with Multi Layer Perceptron with PyTorch.

5.5.3.5.1 Import Libraries

import numpy as np import torch import torchvision import matplotlib.pyplot as plt from torchvision import datasets, transforms from torch import nn from torch import optim from time import time import os from google.colab import drive **5.5.3.5.2 Pre-Process Data** Here we download the data using PyTorch data utils and transform the data by using a normalization function. PyTorch provides a data loader abstraction called a DataLoader where we can set the batch size, data shuffle per batch loading. Each data loader expecte a Pytorch Dataset. The DataSet abstraction and DataLoader usage can be found here

5.5.3.5.3 Define Network Here we select the matching input size compared to the network definition. Here data reshaping or layer reshaping must be done to match input data shape with the network input shape. Also we define a set of hidden unit sizes along with the output layers size. The output_size must match with the number of labels associated with the classification problem. The hidden units can be chosesn depending on the problem. nn.Sequential is one way to create the network. Here we stack a set of linear layers along with a softmax layer for the classification as the output layer.

```
nn.LogSoftmax(dim=1))
print(model)
Sequential(
  (0): Linear(in_features=784, out_features=128, bias=True)
  (1): ReLU()
  (2): Linear(in_features=128, out_features=128, bias=True)
  (3): ReLU()
  (4): Linear(in_features=128, out_features=64, bias=True)
  (5): ReLU()
  (6): Linear(in_features=64, out_features=64, bias=True)
  (7): ReLU()
  (8): Linear(in_features=64, out_features=10, bias=True)
  (9): LogSoftmax(dim=1)
)
```

5.5.3.5.4 Define Loss Function and Optimizer Read more about Loss Functions and Optimizers supported by PyTorch.

```
criterion = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.003, momentum=0.9)
```

5.5.3.5.5 Train

```
epochs = 5
for epoch in range(epochs):
    loss_per_epoch = 0
    for images, labels in train_loader:
        images = images.view(images.shape[0], -1)
        # Gradients cleared per batch
        optimizer.zero_grad()
        # Pass input to the model
        output = model(images)
        # Calculate loss after training compared to labels
        loss = criterion(output, labels)
        # backpropagation
```

```
loss.backward()

# optimizer step to update the weights
optimizer.step()

loss_per_epoch += loss.item()
average_loss = loss_per_epoch / len(train_loader)
print("Epoch {} - Training loss: {}".format(epoch, average_loss))

Epoch 0 - Training loss: 1.3052690227402808
Epoch 1 - Training loss: 0.33809808635317695
Epoch 2 - Training loss: 0.22927882223685922
Epoch 3 - Training loss: 0.16807103878669521
Epoch 4 - Training loss: 0.1369301250545995
```

5.5.3.5.6 Model Evaluation Similar to training data loader, we use the validation loader to load batch by batch and run the feed-forward network to get the expected prediction and compared to the label associated with the data point.

```
correct_predictions, all_count = 0, 0
# enumerate data from the data validation loader (loads a batch at a time)
for batch_id, (images,labels) in enumerate(validation_loader):
  for i in range(len(labels)):
    img = images[i].view(1, 784)
    # at prediction stage, only feed-forward calculation is required.
    with torch.no_grad():
       logps = model(img)
    # Output layer of the network uses a LogSoftMax layer
    # Hence the probability must be calculated with the exponential values.
    # The final layer returns an array of probabilities for each label
    # Pick the maximum probability and the corresponding index
    # The corresponding index is the predicted label
    ps = torch.exp(logps)
    probab = list(ps.numpy()[0])
    pred_label = probab.index(max(probab))
    true_label = labels.numpy()[i]
    if(true_label == pred_label):
      correct_predictions += 1
    all_count += 1
print(f"Model Accuracy {(correct_predictions/all_count) * 100} %")
Model Accuracy 95.95 %
```

5.5.3.5.7 References

- 1. Torch NN Sequential
- 2. Handwritten Digit Recognition Using PyTorch Intro To Neural Networks
- 3. MNIST Handwritten Digit Recognition in PyTorch

5.5.3.6 MNIST-AutoEncoder Classification on Google Colab MNIST with AutoEncoder: Classification on Google Colab

- Open In Colab
- Open in GitHub
- Download

5.5.3.6.1 Prerequisites Install the following packages

! pip3 install cloudmesh-installer ! pip3 install cloudmesh-common

5.5.3.6.2 Import Libraries

```
import tensorflow as tf
from keras.layers import Dense, Input
from keras.layers import Conv2D, Flatten
from keras.layers import Reshape, Conv2DTranspose
from keras.models import Model
from keras.datasets import mnist
from keras.utils import plot_model
from keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
```

5.5.3.6.3 Download Data and Pre-Process

```
(x_train, y_train), (x_test, y_test) = mnist.load_data()
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
```

5.5.3.6.4 Define Model

```
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
x = Dense(hidden_units[0], activation='relu')(x)
x = Dense(hidden_units[1], activation='relu')(x)
shape = K.int_shape(x)
# generate latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)
# instantiate encoder model
encoder = Model(inputs,
                latent,
                name='encoder')
encoder.summary()
plot_model(encoder,
           to_file='encoder.png',
           show_shapes=True)
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
x = Dense(shape[1] * shape[2] * shape[3])(latent_inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)
x = Dense(hidden_units[0], activation='relu')(x)
x = Dense(hidden_units[1], activation='relu')(x)
outputs = Dense(1, activation='relu')(x)
```

```
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='decoder.png', show_shapes=True)
autoencoder = Model(inputs,
            decoder(encoder(inputs)),
           name='autoencoder')
autoencoder.summary()
plot_model(autoencoder,
      to_file='autoencoder.png',
      show_shapes=True)
autoencoder.compile(loss='mse', optimizer='adam')
Model: "encoder"
_____
                Output Shape Param #
Layer (type)
encoder_input (InputLayer) [(None, 28, 28, 1)]
                                0
        _____
                 (None, 28, 28, 32) 64
dense_2 (Dense)
------
                     _____
dense_3 (Dense)
                 (None, 28, 28, 64) 2112
_____
flatten_1 (Flatten) (None, 50176)
                                0
         _____
latent_vector (Dense) (None, 16) 802832
_____
Total params: 805,008
Trainable params: 805,008
Non-trainable params: 0
          _____
Model: "decoder"
         Output Shape Param #
Layer (type)
_____
decoder_input (InputLayer) [(None, 16)]
                                0
     _____
           (None, 50176)
dense_4 (Dense)
                               852992
     _____
                            _____
                                  _____
reshape (Reshape)
            (None, 28, 28, 64) 0
_____
dense_5 (Dense)
                (None, 28, 28, 32) 2080
        _____
dense_6 (Dense) (None, 28, 28, 64) 2112
```

```
nse 7 (Dense) (None, 28, 28, 1) 65
                  _____
dense_7 (Dense)
Total params: 857,249
Trainable params: 857,249
Non-trainable params: 0
           _____
Model: "autoencoder"
 _____
Layer (type) Output Shape
                           Param #
_____
encoder_input (InputLayer) [(None, 28, 28, 1)] 0
______
encoder (Functional) (None, 16)
                           805008
decoder (Functional) (None, 28, 28, 1) 857249
_____
Total params: 1,662,257
Trainable params: 1,662,257
Non-trainable params: 0
```

5.5.3.6.5 Train

5.5.3.6.6 Test

Test accuracy: 91.8%

5.5.3.6.7 Visualize

```
imgs = np.concatenate([x_test[:8], x_decoded[:8]])
imgs = imgs.reshape((4, 4, image_size, image_size))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Input: 1st 2 rows, Decoded: last 2 rows')
plt.imshow(imgs, interpolation='none', cmap='gray')
plt.savefig('input_and_decoded.png')
plt.show()
```

5.5.3.7 MNIST-CNN Classification on Google Colab MNIST with Convolutional Neural Networks: Classification on Google Colab

- Open In Colab
- Open in GitHub
- Download

5.5.3.7.1 Prerequisites Install the following packages

- ! pip3 install cloudmesh-installer
- ! pip3 install cloudmesh-common

5.5.3.7.2 Import Libraries

```
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from keras.models import Sequential
from keras.layers import Activation, Dense, Dropout
from keras.layers import Conv2D, MaxPooling2D, Flatten, AveragePooling2D
from keras.utils import to_categorical, plot_model
from keras.datasets import mnist
```

5.5.3.7.3 Download Data and Pre-Process

```
(x_train, y_train), (x_test, y_test) = mnist.load_data()
num_labels = len(np.unique(y_train))
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
input_shape = (image_size, image_size, 1)
print(input_shape)
batch_size = 128
kernel_size = 3
pool_size = 2
filters = 64
dropout = 0.2
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/
   \hookrightarrow mnist.npz
11493376/11490434 [==================] - Os Ous/step
(28, 28, 1)
```

5.5.3.7.4 Define Model

```
model.add(Conv2D(filters=filters,
          kernel_size=kernel_size,
          activation='relu',
          padding='same'))
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=filters,
          kernel_size=kernel_size,
          activation='relu'))
model.add(Flatten())
model.add(Dropout(dropout))
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='cnn-mnist.png', show_shapes=True)
Model: "sequential_1"
_____
                Output Shape
                                Param #
Layer (type)
conv2d_4 (Conv2D)
                (None, 28, 28, 64)
                                 640
max_pooling2d_3 (MaxPooling2 (None, 14, 14, 64) 0
_____
             (None, 14, 14, 64)
                              36928
conv2d_5 (Conv2D)
 _____
max_pooling2d_4 (MaxPooling2 (None, 7, 7, 64)
                                 0
         _____
                           _____
conv2d_6 (Conv2D) (None, 7, 7, 64) 36928
_____
max_pooling2d_5 (MaxPooling2 (None, 3, 3, 64)
                                 0
      _____
                                    ____
conv2d_7 (Conv2D)
                (None, 1, 1, 64)
                             36928
      _____
                       -----
                                 _____
flatten_1 (Flatten) (None, 64)
                                 0
 _____
dropout_1 (Dropout) (None, 64)
                                 0
 _____
           (None, 10)
dense_1 (Dense)
                                 650
_____
activation_1 (Activation) (None, 10)
                                 0
Total params: 112,074
Trainable params: 112,074
Non-trainable params: 0
 _____
```

5.5.3.7.5 Train

5.5.3.7.6 Test

5.5.3.8 MNIST-LSTM Classification on Google Colab MNIST-LSTM Classification on Google Colab

- Open In Colab
- Open in GitHub
- Download

5.5.3.8.1 Pre-requisites Install the following Python packages

- 1. cloudmesh-installer
- 2. cloudmesh-common

```
pip3 install cloudmesh-installer
pip3 install cloudmesh-common
```

5.5.3.8.2 Sample LSTM with Tensorflow Keras

5.5.3.8.3 Import Libraries

```
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, SimpleRNN, InputLayer, LSTM
from tensorflow.keras.utils import to_categorical, plot_model
from tensorflow.keras.datasets import mnist
from cloudmesh.common.StopWatch import StopWatch
```

5.5.3.8.4 Download Data and Pre-Process

```
StopWatch.start("data-load")
(x_train, y_train), (x_test, y_test) = mnist.load_data()
StopWatch.stop("data-load")
StopWatch.start("data-pre-process")
num_labels = len(np.unique(y_train))
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size])
x_test = np.reshape(x_test,[-1, image_size, image_size])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
StopWatch.stop("data-pre-process")
input_shape = (image_size, image_size)
batch_size = 128
units = 256
dropout = 0.2
```

5.5.3.8.5 Define Model

```
StopWatch.start("compile")
model = Sequential()
model.add(LSTM(units=units,
              input_shape=input_shape,
              return_sequences=True))
model.add(LSTM(units=units,
              dropout=dropout,
              return_sequences=True))
model.add(LSTM(units=units,
              dropout=dropout,
              return_sequences=False))
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='rnn-mnist.png', show_shapes=True)
model.compile(loss='categorical_crossentropy',
         optimizer='sgd',
         metrics=['accuracy'])
StopWatch.stop("compile")
Model: "sequential_1"
       _____
                          _____
Layer (type) Output Shape Param #
(None, 28, 256)
lstm_3 (LSTM)
                                     291840
 -----
                  (None, 28, 256) 525312
lstm_4 (LSTM)
_____
lstm_5 (LSTM)
                  (None, 256)
                                     525312
 _____
             (None, 10)
dense_1 (Dense)
                                    2570
activation_1 (Activation) (None, 10) 0
Total params: 1,345,034
Trainable params: 1,345,034
Non-trainable params: 0
```

5.5.3.8.6 Train
5.5.3.8.7 Test

```
StopWatch.start("evaluate")
loss, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))
StopWatch.stop("evaluate")
StopWatch.benchmark()
79/79 [========================] - 22s 260ms/step - loss: 1.9646 - accuracy:
  ↔ 0.3505
Test accuracy: 35.0%
          _____+
  \hookrightarrow
              | Status | Time | Sum | Start
| User | OS | Version
Name
                                                           | tag |
  \hookrightarrow Node
                                                           \hookrightarrow
| data-load | failed | 0.354 | 0.967 | 2021-02-18 15:27:21 |
                                                                  → 351ef0f61c92 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
| data-pre-process | failed | 0.098 | 0.198 | 2021-02-18 15:27:21 |
                                                                  L
  → 351ef0f61c92 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
compile | failed | 0.932 | 2.352 | 2021-02-18 15:27:23 |
                                                                  → 351ef0f61c92 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
| train | failed | 377.842 | 377.842 | 2021-02-18 15:27:26 |
                                                                  → 351ef0f61c92 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
| evaluate | failed | 21.689 | 2021-02-18 15:33:44 |
                                                                  → 351ef0f61c92 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
\hookrightarrow
```

5.5.3.8.8 References Orignal Source to Source Code

5.5.3.9 MNIST-MLP Classification on Google Colab MNIST-MLP Classification on Google Colab

- Open In Colab
- Open in GitHub
- Download

In this lesson we discuss in how to create a simple IPython Notebook to solve an image classification problem with Multi Layer Perceptron.

5.5.3.9.1 Pre-requisites Install the following Python packages

- 1. cloudmesh-installer
- 2. cloudmesh-common

```
pip3 install cloudmesh-installer
pip3 install cloudmesh-common
```

5.5.3.9.2 Sample MLP with Tensorflow Keras

```
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.utils import to_categorical, plot_model
from keras.datasets import mnist
#import pydotplus
from keras.utils.vis_utils import model_to_dot
#from keras.utils.vis_utils import pydot
from cloudmesh.common.StopWatch import StopWatch
StopWatch.start("data-load")
(x_train, y_train), (x_test, y_test) = mnist.load_data()
StopWatch.stop("data-load")
```

```
num_labels = len(np.unique(y_train))
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
image_size = x_train.shape[1]
input_size = image_size * image_size
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test = np.reshape(x_test, [-1, input_size])
x_test = x_test.astype('float32') / 255
batch_size = 128
hidden_units = 512
dropout = 0.45
model = Sequential()
model.add(Dense(hidden_units, input_dim=input_size))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(hidden_units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(hidden_units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(hidden_units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='mlp-mnist.png', show_shapes=True)
StopWatch.start("compile")
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
StopWatch.stop("compile")
StopWatch.start("train")
model.fit(x_train, y_train, epochs=5, batch_size=batch_size)
StopWatch.stop("train")
```

```
StopWatch.start("test")
loss, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))
StopWatch.stop("test")
StopWatch.benchmark()
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/
  \hookrightarrow mnist.npz
11493376/11490434 [=================] - 0s Ous/step
Model: "sequential"
Layer (type)
               Output Shape
                              Param #
_____
              (None, 512)
dense (Dense)
                              401920
_____
activation (Activation) (None, 512)
                              0
_____
dropout (Dropout) (None, 512)
                              0
        _____
                      -----
dense_1 (Dense)
           (None, 512)
                              262656
_____
activation_1 (Activation) (None, 512)
                              0
 ------
                _____
dropout_1 (Dropout) (None, 512)
                              0
     _____
                 ____
                      _____
dense_2 (Dense) (None, 512)
                              262656
_____
activation_2 (Activation) (None, 512)
                              0
    dropout_2 (Dropout) (None, 512)
                              0
     _____
                     _____
dense_3 (Dense) (None, 512)
                              262656
activation_3 (Activation) (None, 512)
                              0
 _____
dropout_3 (Dropout) (None, 512)
                              0
 _____
            (None, 10)
dense_4 (Dense)
                              5130
activation_4 (Activation) (None, 10) 0
Total params: 1,195,018
Trainable params: 1,195,018
Non-trainable params: 0
```

```
_____
Epoch 1/5
469/469 [======================] - 14s 29ms/step - loss: 0.7886 - accuracy:
  ↔ 0.7334
Epoch 2/5
469/469 [======================] - 14s 29ms/step - loss: 0.1981 - accuracy:
  ↔ 0.9433
Epoch 3/5
469/469 [======================] - 14s 29ms/step - loss: 0.1546 - accuracy:
  ↔ 0.9572
Epoch 4/5
469/469 [========================] - 14s 29ms/step - loss: 0.1302 - accuracy:
  ↔ 0.9641
Epoch 5/5
469/469 [==================] - 14s 29ms/step - loss: 0.1168 - accuracy:
  ↔ 0.9663
79/79 [===============] - 1s 9ms/step - loss: 0.0785 - accuracy:
  ↔ 0.9765
Test accuracy: 97.6%
\hookrightarrow
| Name | Status | Time | Sum | Start

↔ | User | OS | Version
                                             | tag | Node
                                                  \hookrightarrow
                                                  6609095905
| data-load | failed | 0.549 | 0.549 | 2021-02-15 15:24:00 |
  → d1 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
compile | failed | 0.023 | 0.023 | 2021-02-15 15:24:01 | 6609095905
  → d1 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
| train | failed | 69.1 | 69.1 | 2021-02-15 15:24:01 |
                                                    6609095905
  → d1 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
test
      | failed | 0.907 | 0.907 | 2021-02-15 15:25:10 |
                                                    6609095905
  → d1 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
```

5.5.3.9.3 References Orignal Source to Source Code

5.5.3.10 MNIST-RMM Classification on Google Colab MNIST with Recurrent Neural Networks: Classification on Google Colab

• Open In Colab

- Open in GitHub
- Download

5.5.3.10.1 Prerequisites Install the following packages

```
! pip3 install cloudmesh-installer
! pip3 install cloudmesh-common
```

5.5.3.10.2 Import Libraries

```
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, SimpleRNN
from tensorflow.keras.utils import to_categorical, plot_model
from tensorflow.keras.datasets import mnist
from cloudmesh.common.StopWatch import StopWatch
```

5.5.3.10.3 Download Data and Pre-Process

```
StopWatch.start("data-load")
(x_train, y_train), (x_test, y_test) = mnist.load_data()
StopWatch.stop("data-load")
StopWatch.start("data-pre-process")
num_labels = len(np.unique(y_train))
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size])
x_test = np.reshape(x_test,[-1, image_size, image_size])
```

```
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
StopWatch.stop("data-pre-process")
input_shape = (image_size, image_size)
batch_size = 128
units = 256
dropout = 0.2
```

5.5.3.10.4 Define Model

```
StopWatch.start("compile")
model = Sequential()
model.add(SimpleRNN(units=units,
                dropout=dropout,
                input_shape=input_shape, return_sequences=True))
model.add(SimpleRNN(units=units,
                dropout=dropout,
                return_sequences=True))
model.add(SimpleRNN(units=units,
               dropout=dropout,
                return_sequences=False))
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='rnn-mnist.png', show_shapes=True)
model.compile(loss='categorical_crossentropy',
           optimizer='sgd',
           metrics=['accuracy'])
StopWatch.stop("compile")
Model: "sequential"
Layer (type) Output Shape Param #
 _____
_____
simple_rnn (SimpleRNN) (None, 28, 256)
                                          72960
simple_rnn_1 (SimpleRNN) (None, 28, 256)
                                      131328
   _____
simple_rnn_2 (SimpleRNN) (None, 256)
                                          131328
         _____
                        ____
                              _____
dense (Dense) (None, 10)
                                           2570
```

5.5.3.10.5 Train

5.5.3.10.6 Test

```
StopWatch.start("evaluate")
loss, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))
StopWatch.stop("evaluate")
StopWatch.benchmark()
↔ 0.9181
Test accuracy: 91.8%
\hookrightarrow
            | Status | Time | Sum | Start
Name
                                                 | tag |
  \hookrightarrow Node | User | OS | Version
                                                  |-----
  \hookrightarrow
| data-load | failed | 0.36 | 0.36 | 2021-02-18 15:16:12 |
                                                     8 |
  → f16b3b1f784 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
| data-pre-process | failed | 0.086 | 0.086 | 2021-02-18 15:16:12 |
                                                       8
 → f16b3b1f784 | collab | Linux | #1 SMP Thu Jul 23 08:00:38 PDT 2020 |
```

compile failed 0.51 0.51 2021-02-18 15:16:12	8	
↔ f16b3b1f784 collab Linux #1 SMP Thu Jul 23 08:00:38 PDT 2020		
train failed 126.612 126.612 2021-02-18 15:16:13	8	
↔ f16b3b1f784 collab Linux #1 SMP Thu Jul 23 08:00:38 PDT 2020		
evaluate failed 6.798 6.798 2021-02-18 15:18:19	8	
↔ f16b3b1f784 collab Linux #1 SMP Thu Jul 23 08:00:38 PDT 2020		
+++++++	+	+-
\hookrightarrow		

5.5.3.10.7 References Orignal Source to Source Code

5.6 NLP

5.6.1 AWS Translate Service 🖓

AWS offers there a Text-translation service. A comorehensive manual on how to use it and sign up for this service is located at

https://docs.aws.amazon.com/translate/latest/dg/setting-up.html

In this documentation we provide a summary of steps that give you quickly access to the service.

5.6.1.1 Step 1: Creating a new iam user account on aws. To use AWS-translate you need to create an account via the IAM user account application form:

https://portal.aws.amazon.com/billing/signup#/start/email

Like many other cloud services you will have to enable billing in order to use this service. Sign up for an iam user account and make the username name adminuser :

aws				
	Sign up for AWS			
Explore Free Tier products with a new AWS account.	Root user email address Used for account recovery and some administrative functions			
To learn more, visit aws.amazon.com/free.				
	AWS account name Choose a name for your account. You can change this name in your account settings after you sign up.			
	Verify email address			
	OR			
	Sign in to an existing AWS account			

5.6.1.1.1 Step 2: Creating a access key ID and secret ID Once you have signed up with an IAM user account and have implemented billing you can navigate to the aws console:

https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1#/home

Here you can access secret keys and set permissions. At the top of this page search for text translate.

From here we are going to create an access key ID and a secret key id. This step is trivial to the success of a translation example

From the IAM dashboard page select the 'Users' option under IAM Resources

After clicking users you can create a user to run credentials.

0 × IAM > Users Users (1) Info An IAM user is an identity with long-term credentials that is used to interact with AWS in an Q. Find users by username or ac < 1 > User name \bigtriangledown Groups \bigtriangledown Last activity \bigtriangledown MFA Password a... Administrators Yesterday 🔿 11 days ago

You will be required to add a name.

Make sure you check the box for Access Key and go to the next step.

From here click add user.

Proceedings of the CyberTraining REU2022

Auu user			1 (2)	(3) (4) (5)	
Set user details					
You can add multiple users at once w	the same access type and perm	issions. Learn more			
User name*					
	his field is required.				
	Add another user				
Select AWS access type					
Select how these users will primarily a an assumed role. Access keys and au	ess AWS. If you choose only pro generated passwords are provid	ogrammatic access, it does NOT preve ed in the last step. Learn more	ent users from acce	ssing the console using	
Select how these users will primarily a an assumed role. Access keys and au Select AWS credential type*	ess AWS. If you choose only pro- generated passwords are provid Access key - Programmat Enables an access key ID a other development tools.	ogrammatic access, it does NOT preve ed in the last step. Learn more ic access and secret access key for the AWS Al	ent users from acce	issing the console using	
Select how these users will primarily an assumed role. Access keys and au Select AWS credential type*	ess AWS. If you choose only pri generated passwords are provid Access key - Programmat Enables an access key ID a other development tools. Password - AWS Manager Enables a password that al	bgrammatic access, it does NOT prave ed in the last step. Learn more ic access and secret access key for the AWS Al nent Console access fows users to sign-in to the AWS Mana	ant users from acce PI, CLI, SDK, and agement Console.	issing the console using	
Select how these users will primarily a an assumed role, Access keys and au Select AWS credential type*	ess AWS. If you choose only pri generated passwords are provid Access key - Programmat Enables an access key ID : other development tools. Password - AWS Manager Enables a password that al	ogrammatic access, it does NOT preve ed in the last step. Learn more to access and secret access key for the AWS Al ment Console access lows users to sign-in to the AWS Mane	ant users from acce PI, CLI, SDK, and agement Console.	issing the console using	
Select how these users will primarily an assumed role. Access keys and au Select AWS credential type*	ess AWS. If you choose only pri- periorated passwords are provid Access key - Programmat Enables an access key ID r other development tools. Password - AWS Manager Enables a password that all	ogrammatic access, it does NOT preve ed in the last step. Learn more to access and secret access key for the AWS AI nent Console access ows users to sign-in to the AWS Man	ant users from acce	issing the console using	
Select how these users will primarily a an assumed role. Access keys and au Select AWS credential type*	ess AWS. If you choose only pr enerated passwords are provid @ Access key - Programmar Enables an access key ID other development tools. Password - AWS Manager Enables a password that al	ogrammatic access, it does NOT preve ed in the last step. Learn more is access and secret access key for the AWS AI nent Console access (over users to sign-in to the AWS Mand	ant users from acce	using the console using	
Select how these users will primarily as an assumed role. Access keys and au Select AWS credential type"	ess AWS. If you choose only pr enerated passwords are provid Access key - Programmar Enables an access key ID other development tools. Password - AWS Manager Enables a password that al	agrammatic access, it does NOT prevent of in the last tap. Learn more is access and servert access key for the AWS AI nett Console access rows users to sign-in to the AWS Many	ant users from acce	saing the console using	

Here is a section to add permissions for your IAM account User Group. From here search translate and check the boxes for Translate, and TranslateFullAccess.

You can then click create group.

Next step is tags. this step is meant for users that want to give optional tags to their project.

You can skip this as it is irrelevant to this project.

After reaching this page you will want to confirm the creation of your user group.

very our choice. User name AVX soccess type Permo avx Permo avx Pe	Add user		1 2 3 4 5
we very choloss. After you creates the user, you can view and download the autogenerated password and access key. r dotalis f dotal	Review		
r details User name pc MYS scenes type Porgrammatic access key Permissions boundary is not set Permissions boundary is not set	Review your choices. After you crea	the user, you can view and download the autogenerated pas	sword and access key.
Use ranse DP MS societs (w) Programmatic access (w) that access (w) Permission Sinder (w) is not dary (s) not dary Image: Manual Access (w)	User details		
AVS saces (pp. Perm) Programmatic scores - with an access (w) Permission boundary (in n4 access (w) Permis	User nam	pop	
Permissions boundary Permissions boundary is not set missions source >>>>>>>>>>>>>>>>>>>>>>>>>>>>	AWS access typ	Programmatic access - with an access key	
missions summary user shown above will be added to the following groups. Neme Administrators a Administrators gr were added.	Permissions boundar	Permissions boundary is not set	
user shown above will be added to the following groups. be Attracting of the Added to the following groups. be Attracting of the Added to the Adde	Permissions summary		
ee Name Nop Administration g were added	The user shown above will be adde	to the following groups.	
xip Administrations S gg were added:	Type Name		
8 ge wore addind.	Group Administra	ors	
gy were added.	Tags		
	No tags were added.		
Cancel Previous Create user			Cancel Previous Create user

From here you will be sent to a screen where you can download credentials

Proceedings of the CyberTraining REU2022

Add	user	1	2 3 4 5
0	Success You successfully created the users shown below. You can view and down instructions for signing in to the AVM Management Contole. This is the la you can create new credentials at any time. Users with AVMS Management Console access can sign-in at: https://2130	load user security credentials. You ci st time these credentials will be avail JS5063682.signin.aws.amazon.com/	an also email users able to download. However, console
≛ Dow	/nload.csv		
	User	Access key ID	Secret access key
+ 0	pop	AKIATDGYSI2BF6MKXHOR	Show

download these credentials as a csv file for later use.

Open up a terminal window to install aws on the command line.

Run these commands:

Start of a virtual enviorment

```
$ python3.10 -m venv ~/ENV3
$ source ~/ENV3/bin/activate
$ curl "https://awscli.amazonaws.com/AWSCLIV2.pkg" -o "AWSCLIV2.pkg"
$ sudo installer -pkg ./AWSCLIV2.pkg -target /
$ which aws
$ aws --version
$ aws configure
```

Here they will give you an output like

You will open the file you downloaded from the user creation earlier. You will see your personalized access key in that file. You will copy that key and paste it into the terminal.

You then will add your secret key which is also in the csv you downloaded.

AWS Secret Access Key [************/kIg]:

You then will add the region

Default region name [eu-west-1]:

The region depends on which one is closest to you. For me, it is eu-west-1.

Then you will insert json

```
Default output format [json]:
```

Here It is recommended to insert json :

From here you can get started working in the command line found here: CLI Start

5.6.2 Azure Translate 🔿

Here are steps to get started with the azure translate example in cloudmesh nlp.

First, navigate tot his link to sign uo with an azure account: https://azure.microsoft.com/en-us/free/cognitive-services/

After selecting this link you will follow the isntructions to set up a microsoft azure account. This requires billing.

Create personalized, Al-driven experiences with an Azure free account
Get started with 12 months of free services including Azure Cognitive Services
Start free
Ray as you go >

furthermore, after setting up an account with an

email and billing you will be prompted to the console screen.

from here, you will click the top left link to go to the console.

You can either type translators in the search bar or follow this link: https://portal.azure.com/#blade/Microsoft_Azure_Provide the search bar or follow the search bar or

From here you will click the create translator button.

This is what the Create Translator console will look like. Here there is a form for creating an endpoint for this translate service

Microsoft Azure	Upgrade > Search resources, services, and docs (G+/)
Home > Create a resource >	Translator >
Create Translator	
multi-language support such as communication, and more.	website localization, e-commerce, customer support, messaging applications, internal
Project Details	
Subscription *	Azure subscription 1 V
Resource group * ①	Create new
Instance Details Please choose the Global I offer a region selection us	spion unless your business or application requires a specific region. Applications that do not the Global region.
Region * 🕕	
Name * 🕕	
Pricing tier * ① View full pricing details	v
Review + create <	revious Next : Network >

This what the form should look like filled out with the proper applied information.

E Microsoft Azure 🛈 Upgrade	 Search resources, services, and docs (G+/)
Home > Create a resource > Translator Create Translator	>
Changes on this step may reset later select	ctions you have made. Review all options prior to deployment.
Subscription * ① Resource group * ①	Azure subscription 1 Coudmesh Create new
Instance Details	
Please choose the Global region unless offer a region selection use the Global n	your business or application requires a specific region. Applications that do not egion.
Region * 🕕	East US 🗸
Name * 🕕	cloudmesh 🗸
The free tier (F0) for this resource type is dropdown below.	s already being used by your subscription, therefore it will not appear in the $\overset{\mathcal{O}}{\sim}$
Pricing tier * ①	Standard S1 (Pay as you go)
Review + create < Previous	Next : Network >

Resource groups are mostly irrelevant they are for bigger scaled projects where multiple people are working. Title this something for the project since it is required for an endpoint.

After this scroll down and hit 'Create'

Proceedings of the CyberTraining REU2022

source group * 🕕	cloudmesh	~
	Create new	
Details	A resource group is a container that holds related resources for an Azure solution.	
	Name *	
ase choose the Global region unless er a region selection use the Global r	cloudmesh A resource group with the same name already exists in the selected subscription Azure	hat do not
	subscription 1.	
0	OK Cancel	~
D		

This is what the screen looks like after deployment. Download the deployment details and click next steps.

Microsoft Azu	re 🗇 Upgrade	P Search resources, servic	es, and docs (G+/)			DI 🕼	00
Home > Microsoft. Deployment	.CognitiveSe	ervicesTextTran	slation-2022	050516490	8 Overviev	V 🖈 …	
P Search (Cmd+/)	«	📋 Delete 🚫 Cancel 👖	🗅 Redeploy 🏷 Refre	sh			
🔒 Overview		Ø We'd love your feedback	1 →				
Inputs							
Outputs		📀 Your deployr	nent is comple	ete			
Template		Deployment name: N Subscription: Azure s Resource group: clou	licrosoft.CognitiveServic ubscription 1 dmesh Microsoft.Cog 20505164905	esTextTranslation-2. nitiveServicesTextTra	Start time: 5/5/2 Correlation ID: c	1022, 4:52:07 PM 18412de6-fc83-4	5f1-a882-c
		Deployment details	(Download)				
		\lor Next steps					

5.6.2.1 Installing and Starting Azure Translate through the command line

5.6.2.1.1 Step 2: installing using Homebrew Homebrew is by far the easiest way of installing Microsoft Azure.

On the command line use the command

```
$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD

→ /install.sh)"
```

This will install Homebrew and all of its packages. Now run the command below to install azure cli.

```
$ brew update && brew install azure-cli
```

This installs the azure command line interface in the current directory.

From here we need to login to azure and its console that we created above.

start with

\$ az login

This command will prompt you with a new window page with a microsoft login.

Microsoft A	zure
Microsoft Pick an account	
Soladine, Myles mysoladi@iu.edu Signed in	:
+ Use another account	
	Back

From here choose your proper login that was created with azure translate.

you will see a success in login.

information about your account will be displayed on the command line.

```
[
  {
    "cloudName": "AzureCloud",
    "homeTenantId": "1113be34-aed1-4d00-ab4b-cdd02510be91",
    "id": "d0ff5454-d152-4d11-8fe8-58a0c08581f1",
    "isDefault": true,
    "managedByTenants": [],
    "name": "Azure subscription 1",
    "state": "Enabled",
    "tenantId": "1113be34-aed1-4d00-ab4b-cdd02510be91",
    "user": {
      "name": "mysoladi@iu.edu",
      "type": "user"
    }
  }
]
```

Use the command line to create a translate example using azure:

For secret key you must insert the endpoint key that was generated in the previous account creation (same as key 1 in the figure below).

Region is also highlighted in this form.

This will return

```
[{"detectedLanguage":{"language":"en","score":1.0},"translations":[{"text":"Hallo

→ Welt","to":"de"}]}]%
```

Using azure in a program sample found here you can use the endpoints, region, and secret key found in account creation to return a text translation.

5.6.3 Google Translation Service 🖓

In order to get started using google translate there are steps for setup. Navigate to the link

This is the homepage for Google cloud. Will need to activate your console with a Google account and billing.

Google offers a free trial of up to \$300 of language translation to test. After activation of account, you will want to click console in the top right.

≡	Google Cloud Platfor	Coogle Translate Project Q Search Products, resources, docs (/)	٠	5	٠	0	÷	М
A	Home :	DASHBOARD ACTIVITY RECOMMENDATIONS				1	CUSTO	MIZE
0	Recent		_					
-	View all products	Project info : RPI APIs : Project name Bequette (council to council to counci	0	Goog	ple C	loud I	Platfo	vrm s
PINN	ED	Ocogle Translate Project Project number 10	~	60.101	loud	otatuo r	lashbo	ard
θ	IAM & Admin	499482367673 0.8 Project ID 0.9	-	0010				
	Billing	bright-sunlight-346616 No data is available for the selected time frame. 0.4		Billin	g			
API	APIs & Services	ADD PEOPLE TO THIS PROJECT 0.2		Estima For the	ted of	arges g period	1 Apr 1 -	US - 19, 21
嶌	Marketplace	Go to project settings 4 PM 4:00 0	8	Take a	tour o	f billing	,	
۲	Compute Engine	Resources	\rightarrow	View c	letailes	d charg	es	
88	Cloud Storage	© BigQuery Go to APIs overview						
н	VPC network	 SQL 	1	Mon	torin	ıg		
٢	Kubernetes Engine	Managed MySQL, PostgresqL, SQL Server		Setup	alerting	a policie	5	
Q	BigQuery	VMs, GPUs, TPUs, Disks		Create	uptime	checks		
8	SQL	Storage Multi-class multi-region object storage						
Ø	Security :	() Cloud Functions Event-driven serverless functions		View a	I dasht	oards		
)≽	Cloud Run		\rightarrow	Go to I	Monito	ring		

Here is the console for all google projects. The next step is to make a new project by selecting the dropdown at the top left.

The project creation page will look like this:

ocicert	a project	
Search م	a projects and folders	
RECENT	STARRED ALL	
	Name	ID
✓☆ 🕯	Google Translate Project 🕑	bright-sunlight-346616
☆ 🕯	My First Project 😰	winter-vim-346617

Then, click create new project.

	Q Search Products, resources, docs (/)				
New Project					
You have 23 projects remainin delete projects. Learn more MANAGE QUOTAS	g in your quota. Request an increase or				
Project name * TEST translation project					
Location *	BROWSE				
CREATE CANCEL					

Give your project a title.

The dashboard will automatically update to use your new project, If not, select your project at the top left.

From here we need to activate the api for language translation. Select the api tab in the sidebar to the left.

≡	Google Cloud Plat	tform	🔹 test translate project 👻 🔍 🔍
♠	Home	>	OMMENDATIONS
0	Recent	>	
	View all products		RPI APIs
PINN	ED		-
θ	IAM & Admin	>	
	Billing		▲ No data is availat
API	APIs & Services	>	
<u>ک</u>	Marketplace		3:45 4 PM
۲	Compute Engine	>	
	Cloud Storage	>	\Rightarrow Go to APIs over
	VPC network	>	
٩	Kubernetes Engine	>	ver
۰.	BigQuery	>	
\$}	SQL		
0	Security	>	
>>	Cloud Run		Now viewing project " organization "No orga

From here you can click the enable apis and services tab at the top

Scroll down to machine learning. Here you will see a cloud translation api. Click the api and enable it.

Proceedings of the CyberTraining REU2022

ary		Q. Search for APIs & Se	rvices					
Machir	e learning							
		Machine learning						
; 0		11 results						
		A Platform Training & Prediction API Google Enterprise API An API to enable creating and using machine learning models.	Cloud AutoML API Google Enterprise API Train high quality custom machine learning models with minimum effort and machine learning.	Cicol Natural Language API Cocogle Enterprise API Provides natural language understanding technologies, such as sentiment analysis, ently				
		© Cloud Optimization API Google Solve operational optimization problems rapidly at massive scale	Cloud Speech-to-Text API Google Enterprise API Speech recognition	Clour Translation API Cogle Entreprise API Inlegates text translation into your website or application.				
_								
_	Genela Cloud Pla	tform 🍨	O Search Broduste recourses door (/)		: 0			
APT	APIs & Services	To use this API you may need	el credentials Click ICREATE CREDENTIALS to net st	arted CREATE CRE	DENTIALS			
•	Enabled APIs & services			_				
##	Library	API/Service Details	DISABLE API					
8 ≥ ⊑ ⊪°	Credentials OAuth consent screan Domain verification Page usage agreements	文ーA Cloud Tr Integrates text by Google Entry Service name translate googlespis.com	ranslation API translation into your website or application. Irrise API Type Status Public API Enabled		RIAL			
	METRICS QUOTAS CREDENTIALS COST							
	Select Graph ↓ Thour & Hours 12 hours 1 day 2 days 4 days 7 days 14 days ▼ 30 days #Batter Venimin Vity, 2 v, 2							
		Traffic by response code		≅ [] 1.00				
				0.86				
			A No data is available for the selected tin	0.66 0.46				

The api is now enabled, and you will see it on your dashboard.

For each project you will have to enable credentials. this is a vital part to the continuation of the project.

on the tab to the left you will see credentials. here we are going to click create service account.

The next step is to title your service account. You will proceed and click the role owner.

this step is to decide what role each user has in the terms of the project. owners typically have access to most resources so we are going to select that one.

After the creation of the service account you will be prompted to download the json private key.

This private key will be placed in your Downloads folder. it is a very important piece of information. When creating this private key make sure to download as a json format.

In the command line you must create a virtual enviroment for the location of this project

```
$ python3.10 -m venv ~/ENV3
$ source ~/ENV3/bin/activate
```

You will need to give this private key a GOOGLE_CREDENTIALS_PATH. This is a very important step.

```
$ export GOOGLE_APPLICATION_CREDENTIALS="KEY_PATH"
```

Example:

In order to use the client library for Natural language translation you will need to install some packages

```
pip install google-cloud-translate==2.0.1
```

or

```
pip install -r requirments.txt
```

From here you should have a linked api-key with a service account, and will be ready to use some examples of natural language programming.

An example for a small natural language program is showcased in snippets.py.

Documentation for getting started in the command line can be found in CLI Start.

5.6.4 Implementation of A Hybrid Cloud natural Language Example 🔿

5.6.4.1 How to Implement using Command Line Interface and The Cloudmesh Catalog (AWS Provider) Step 1: Use the cloudmesh catalog to start the natural language example. AWS Natural Language Example

Here you will install the catalog first.

On mac

```
python3.10 -m venv ~/ENV3
source ~/ENV3/bin/activate
mkdir cm
cd cm
pip install cloudmesh-installer
cloudmesh-installer -ssh install catalog
```

From here you will install the source packages for this command line reference:

pip install -r requirements.txt

```
cms help
cms nlp translate --provider=aws --from=en --to=de --region=eu-west-1 hello world
```

The output to this command should look like:

```
{'date': '05/02/2022 14:45:45',
    'input': 'hello world',
```

```
5.6.4.2 How to Implement using Command Line Interface and The Cloudmesh Catalog (Google Provider) Step 1: Use the cloudmesh catalog to start the Natural Language example. Google Natural Language Example
```

Here you will install the catalog first.

On mac

```
python3.10 -m venv ~/ENV3
source ~/ENV3/bin/activate
mkdir cm
cd cm
pip install cloudmesh-installer
cloudmesh-installer -ssh install catalog
```

From here you will install the source packages for this command line reference:

pip install -r requirements.txt

```
cms help
cms nlp translate --provider=google --from=en --to=de --region=eu-west-1 hello world
```

The output to this command should look like:

5.6.4.3 heterogenous cloudmesh nlp service In this documentation we have an example of using a natural language operator from different providers. This is a service that is started with cloudmesh catalog. After installation of the catalog there are a list of services that can be used. Using cms help on the command line will give that list of services this output will look like:

Documented commands (type help <topic>):</topic>							
========	===========	=========	=============	===			
EOF	commands	dryrun	host	nlp	quit	stopwatch	var
banner	config	echo	info	pause	set	sys	version
catalog	debug	gui	inventory	ру	shell	sysinfo	
clear	default	help	man	q	sleep	term	

Here there is a newly implemented nlp command. This can be accessed by cms nlp in the command line. the source code can be found here

In order to start the translate service from CMS there are a few arguments we will be using. cms nlp translate takes the arguments:

```
--provider=google
--from=en
--to=de
--region=eu-west-1
```

The provider is interchangeable from the implemented services 'aws', 'google' and 'azure'. The argument from takes an interchangeable language code offered from the cloud-providers. This is the language your initial text is decoded in. The argument to is the target language the text will be translated to. This argument also takes a language code offered from the cloud providers. A list of Language codes are found here:

Provider	Google	aws
Language	Supported Language Codes	Supported Language Codes
Afrikaans	af-ZA	af-ZA
Arabic, Gulf	ar-AE	ar-AE
Arabic, Modern Standard	ar-SA	ar-SA
Chinese, Simplified	zh-CN	zh-CN
Chinese, Traditional	zh-TW	zh-TW
Danish	da-DK	da-DK
Dutch	nl-NL	nl-NL

Provider	Google	aws
English, Australian	en-AU	en-AU
English, British	en-GB	en-GB
English, India	en-IN	en-IN
English, Irish	en-IE	en-IE
English, New Zealand	en-NZ	en-NZ
English, Scottish	en-AB	en-US
English, South African	en-ZA	en-ZA
English, US	en-US	en-US
English, Welsh	en-WL	en-WL
French	fr-FR	fr-FR
French, Canadian	fr-CA	fr-CA
Farsi	fa-IR	fa-IR
German	de-DE	de-DE
German, Swiss	de-CH	de-CH
Hebrew	he-IL	he-IL
Hindi, Indian	hi-IN	hi-IN
Indonesian	id-ID	id-ID
Italian	it-IT	it-IT
Japanese	ja-JP	ja-JP
Korean	ko-KR	ko-KR
Malay	ms-MY	ms-MY
Portuguese	pt-PT	pt-PT
Portuguese, Brazilian	pt-BR	pt-BR
Russian	ru-RU	ru-RU
Spanish	es-ES	es-ES
Spanish, US	es-US	es-US
Tamil	ta-IN	ta-IN

Provider	Google	aws
Telugu	te-IN	te-IN
Thai	th-TH	th-TH
Turkish	tr-TR	tr-TR

When selecting a region parameter it is recommended to use eu-west-1 for best success.

FAST API REDOCS DOCS * how to stop it * how to use it * how to see the documentation with docs and redoc

How to enable the service for google and aws given the previous readmes

5.7 TIMESERIES

5.7.1 DL Timeseries 🔿

• Learn how to use deep learning for time series analysis

create and document a simple time series command

use cloudmesh sys command generate to create an extension so we can do a commandline tool

cms timeseries --config=CONFIG

where the config file is a yaml file.

Work with Gregor as he will create a separate github repo for this and create the command template so you can fill it out with content.

6 MNIST

tensorflow: M1 🔿

python -m pip install tensorflow-macos

tensorflow mac

python -m pip install tensorflow

see if previously also works on inten macs

6.1 Setting Parameters while Running mnist Jobs 🖓

6.1.1 Having Cloudmesh Installed

First, make sure Cloudmesh is installed properly on your local device. This can be done with the following command:

```
$ pip install cloudmesh-installer
$ mkdir cm
$ cd cm
$ cloudmesh-installer --ssh get cc
```

6.1.2 Installing the reu2022 folder

Next, make sure the reu2022 folder is installed. While you are in the cm folder, do the following commands to install the folder and be directed to the mnist folder.

```
$ git clone https://github.com/cybertraining-dsc/reu2022.git
```

```
$ cd reu2022/code/deeplearning/mnist
```

6.1.3 Setting the user, host parameters

Now, in order to run these jobs, the following parameters must be set: user, host, cpu, gpu, and device. As a disclaimer, no special characters are allowed while naming these parameters. Specifically no dashes (-) are allowed either. These can be replaced with underscores (_) or periods (.).

Setting the user and host parameters is relatively easy. Make sure you are in the mnist folder in reu2022. To set the user parameter, type in the following:

\$ cms set user='user'

'user' can be what you want to call yourself as long it does not reveal your real identity. You can use your first name, a nickname, a random keyword, etc. For example:

\$ cms set user='alex'

To set the host parameter, type in the following:

```
$ cms set host='host'
```

'host' is used to specify what type on device you're using. You can specify whether you're using a laptop or desktop and what operating system you're running on. For example:

\$ cms set host='win11_laptop'

6.1.4 Setting the cpu and gpu parameters

When you run these mnist jobs, you'll be using either your CPU or GPU to run them. However, you'll have to input these parameters, you'll need to know what model you CPU or GPU is. This can be done with the following command:

\$ python getinfo.py

The following output is produced on this specific device:

```
CPU: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz
GPU: none
```

After you receive these results, you want to shorten your CPU/GPU names to a single term with no spaces, dashes, nor special characters. In this case, the CPU name will be shortened to i7_116567.

If your device doesn't have a GPU, set device to 'cpu' with the command:

```
$ cms set device='cpu'
```

If your device does have a GPU, set device to 'gpu' with the command:

```
$ cms set device='gpu'
```

6.2 Setting Parameters while Running mnist Jobs 🔿

6.2.1 Table of Contents

- Rivanna
- Running Tensorflow on Rivanna
- Run Python MPI Programs on Rivanna
- Setting Parameters while Running mnist Jobs

Learning Objectives

- Learn how to set user parameters using cms
- Learn how to properly name the user , host , cpu , gpu , and device parameters
- Learn how run the mnist files and view the status of their progress

6.2.2 Having Cloudmesh Installed

First, make sure Cloudmesh is installed properly on your local device. This can be done with the following command:

```
$ pip install cloudmesh-installer
$ mkdir cm
$ cd cm
$ cloudmesh-installer --ssh get cc
```

6.2.3 Installing the reu2022 folder

Next, make sure the reu2022 folder is installed. While you are in the cm folder, do the following commands to install the folder and be directed to the mnist folder:

```
$ git clone https://github.com/cybertraining-dsc/reu2022.git
$ cd reu2022/code/deeplearning/mnist
```

6.2.4 Setting the user, host parameters

Now, in order to run these jobs, the following parameters must be set: user , host , cpu , gpu , and device . As a disclaimer, no special characters are allowed while naming these parameters. Specifically no dashes (-) are allowed either. These can be replaced with underscores (_) or periods (.).

Setting the user and host parameters is relatively easy. Make sure you are in the mnist in reu2022. To set the user parameter, type in the following:

```
$ cms set user='user'
```

'user' can be what you want to call yourself as long it does not reveal your real identity. You can use your first name, a nickname, a random keyword, etc. For example:

```
$ cms set user='alex'
```

To set the host parameter, type in the following:

```
$ cms set host='host'
```

'host' is used to specify what type on device you are using. You can specify whether you are using a laptop or desktop and what operating system you are running on. For example:

\$ cms set host='win11_laptop'

6.2.5 Setting the cpu and gpu parameters

When you run these mnist jobs, you will be using either your CPU or GPU to run them. However, you will have to input these parameters; you must know what model your CPU or GPU is. This can be done with the following command:

```
$ python getinfo.py
```

The following output is produced on this specific device:

```
CPU: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz
GPU: none
```

After you receive these results, you want to shorten your CPU/GPU names to a single term with no spaces, dashes, nor special characters. In this case, the CPU name will be shortened to i7_116567.

If your device does not have a GPU, set device to 'cpu' with the command:

\$ cms set device='cpu'

If your device does have a GPU, set device to 'gpu' with the command:

\$ cms set device='gpu'

6.2.6 Running the mnist Files

In the mnist folder located in the reu2022 folder, there are various mnist files that can be run. Each test comes in three file formats, which are in .ipynb, py, and .sh files. On Rivanna, you want to run the .sh. The following example will run mlp_mnist.sh.

rivanna \$ sbatch mlp_mnist.sh

This will submit a Slurm job to run the .sh file and which will be put in the queue that can be viewed using the following command:

rivanna \$ squeue -u \$USER

6.3 MNIST tensorflow rivanna 🔿

Use gregors MNIST program and run on rivanna, improve documentation and make sure everyone can reproduce it

If you have a GPU on your machine also run it there.

Compare with everyone the runtime, and use python graphics to create the image

6.4 MNIST pyTorch Rivanna 🔿

Find a mnist pytorch implementation, make it runnable on rivanna, compare runtime to tensorflow run it on your local machine

7 BIOS

7.1 Bios 🖓

In this section we provide a number of bios from a subset of students that have contributed to this effort in IEEE format.

7.1.1 Alex Beck

Alex Beck has completed his first year at the University of Virginia where he is majoring in electrical engineering. He is set to receive his Bachelor of Science degree in the Spring of 2025.

Alex worked in the summer of 2022 at the UVA Biocomplexity Institute's Computing for Global Challenges program under Dr. Gregor von Laszewski where he gained experience in programming and data science. Prior to that, he had previous experience in sales from working in retail.

At UVA, Alex is involved in a few extracurricular organizations. He is currently active in the Virginia Eta Chapter of Sigma Phi Epsilon, the UVA Climbing Team, and the UVA Chapter of the QuestBridge Scholars Network.

7.1.2 Alison Lu

Alison Lu has completed her second year (Class of 2024) at the University of Virginia pursuing a double major in CS and Chemistry with a minor in Japanese. She is conducting research with the physics department studying quantum computing and photon resolution using machine learning. In addition, she works with UVA's Repair Lab to study gentrification in Norfolk, VA.

She participated in the Biocomplexity Institute's C4GC REU program. Her interests include computer architecture, machine learning, and quantum computing alongside quantum mechanics.

7.1.3 Jackson Miskill

Jackson Miskill has completed his second year at the University of Virginia where he is studying Computer Science and Cognitive Science. He will receive a Bachelor of Arts degree from UVa in Spring of 2024. Jackson has studied python and java in his courses, delving into concepts from basic syntax to data structures and algorithms.

Jackson worked with the UVA Biocomplexity Institute under Dr. Gregor von Laszewski as a part of the Computing for Global Challenges program. He is studying the intersection between Python and cloud computing. In the future, Jackson plans to continue research.

7.1.4 Jacques Fleischer

Figure 26: Jacques Fleischer

Jacques Fleischer is a sophomore at the Miami Dade Honors College. He is set to receive his associate degree in computer science in summer 2022. He received the Miami Dade Honors College Fellows Award.

In the summer of 2021, he participated in the Florida-Georgia Louis Stokes Alliance for Minority Participation REU Data Science and AI Research Program; his research focused on predicting the price of cryptocurrency using artificial intelligence. This was done in conjunction with faculty from Florida A&M University and Indiana University. He presented his findings at the Miami Dade College School of Science Symposium in October 2021. Jacques was accepted to the 2022 Emerging Researchers National (ERN) Conference in STEM after applying with his abstract on cryptocurrency time-series. Additionally, he was one of four Miami Dade College students to be nominated for the Barry Goldwater Scholarship due to his research findings.

Jacques is active in extracurriculars; for instance, he is the current Vice President of the MDC Computer Club. There, he hosts virtual workshops on how to use computer software, including Adobe Premiere Pro and PyCharm. He is also a member of Phi Theta Kappa. Furthermore, he is an active contributor to Cloudmesh: an open-source, all-in-one grid-computing solution written in Python. He presently participates in the University of Virginia's Computing for Global Challenges program with Dr. Gregor von Laszewski to find high performance computing solutions using Raspberry Pis.

7.1.5 Eric He

Junyang (Eric) He completed his first year of study at the University of Virginia majoring in Computer Science. He anticipates to receive his B.S. in Computer Science in 2025. He is currently a member of the Engineering Student Council and the Chinese Student and Scholars Society at UVA.

In the summer of 2021, Eric worked as a Data Analyst intern at Nint (Shanghai) Co., Ltd, a company that provides market data analysis products for E-commerce His work included time series data cleaning and natural language processing.

Eric is currently conducting research with Prof. Geoffrey C. Fox on a Deep Learning model based on LSTM networks trained to predict hydrological features like streamflow, precipitation, and temperature at different locations in the US. He focused primarily on the possibilities of extending the model to countries outside of the US such as Chile and UK.

7.1.6 Abdulbaqiy Diyaolu

AbdulBaqiy Diyaolu is an undergraduate Computer Science and Mathematics Major from Mississippi Valley State University. AbdulBaqiy is currently a presidential scholar at such university.

AbdulBaqiy currently works at Fedex Logistics at MVSU. He helps in data entry and data Analysis. He is hoping to polish his data analysis skills with this opportunity. In the summer of 2022, he partially participated in the Biocomplexity Research Program at UVA where he started to learn elementary python programming.

AbdulBaqiy participates in several extracurricular activities. In MVSU he is a member of African Student Union (ASU), National Society of Black Engineers (NSBE), and the Google Developer's Club. He is also a Strada Scholar at MVSU where he participates in several leadership development activities.

7.1.7 Thomas Butler

Thomas Butler is a Graduate Student at University of Virginia's School of Data Science. His undergraduate degree is in Biomedical engineering. He has over eight years of experience in the Infertility field helping patients, jointly running a Andrology lab, and contributing research to advance the field through joint research on how AMH effects pregnancy outcomes and sperm antibodies effect PSA. He has a certificate in Data Analytics from Georgia Institute of Technology.

7.1.8 Robert Knuuti

Robert Knuuti is a Graduate Student at University of Virginia's School of Data Science. He has over 10 years experience in system architecture and software engineering, and specializes in Development Operations and Cloud Computing. He has constructed air gapped Continuous Integration and Continuous Delivery systems for multiple organizations each supporting more than 100 developers and has facilitated the construction of repeatable, tractable builds for users of these systems.

7.1.9 Jake Kolessar

Jake Kolessar is a Graduate Student at the University of Virginia's School of Data Science. He has a background in mechanical engineering and 2 years of experience as a Modeling, Simulation and Analysis Engineer. He has supported the software design and development of modeling capabilities for event simulation products as well as the integration of models into the simulation framework.

8 REFERENCES

0

- [1] "Slurm Tutorial." Web Page, Jul-2022 [Online]. Available: https://docs.google.com/presentati on/d/1Xt4kOtQpvl1JTDETJkOS-OMi8csZsJJw03xGus3QLA0/edit#slide=id.gd2ae9a35bb_0_0
- [2] U. R. Computing, "Introduction to Rivanna at the RC Learning Portal." Web Page, Jun-2022 [Online]. Available: https://learning.rc.virginia.edu/notes/rivanna-intro
- [3] Linuxize, "Using the SSH Config File." Web Page; Linuxize, Feb-2021 [Online]. Available: https: //linuxize.com/post/using-the-ssh-config-file
- [4] "Get Docker from the Docker documentation." Web Page, Jul-2022 [Online]. Available: https: //docs.docker.com/get-docker
- [5] "Orientation and setup." Web Page, Jul-2022 [Online]. Available: https://docs.docker.com/getstarted
- [6] P. Srivastav, "A Docker Tutorial for Beginners." Web Page, Jan-2016 [Online]. Available: https: //docker-curriculum.com
- [7] M. Galarnyk, "Python Lists and List Manipulation." Web Page at Towards Data Science; Towards Data Science, Nov-2019 [Online]. Available: https://towardsdatascience.com/python-basics-6lists-and-list-manipulation-a56be62b1f95
- [8] "Python List Array Methods." Web Page, Jul-2022 [Online]. Available: https://www.w3schools. com/python/python_ref_list.asp
- "Dictionary Manipulation in Python." Web Page at Python For Beginners, Aug-2020 [Online].
 Available: https://www.pythonforbeginners.com/dictionary/dictionary-manipulation-inpython
- [10] "Python Dictionary Methods." Web Page, Jul-2022 [Online]. Available: https://www.w3schools. com/python/python_ref_dictionary.asp
- [11] "Python Dictionary update() Method." Web Page, Jul-2022 [Online]. Available: https://www.w3 schools.com/python/ref_dictionary_update.asp
- [12] "Creating a dataframe using CSV files." Web Page at Geeks for Geeks, Feb-2022 [Online]. Available: https://www.geeksforgeeks.org/creating-a-dataframe-using-csv-files
- [13] "CSV File Reading and Writing." Web Page, Jul-2022 [Online]. Available: https://docs.python.or g/3/library/csv.html#examples
- [14] "CSV Files Overview." Web Page, Jul-2016 [Online]. Available: https://people.sc.fsu.edu/~jburk ardt/data/csv/csv.html
- [15] "Built-in Functions." Web Page, Jul-2022 [Online]. Available: https://docs.python.org/3/library/ functions.html#open
- [16] "Python CSV File Reading and Writing." Web Page at ProTech, Jul-2022 [Online]. Available: https://www.protechtraining.com/blog/post/python-for-beginners-reading-manipulatingcsv-files-737#extracting-information-from-a-csv-file
- [17] "List Index Out of Range." Web Page at Stack Overflow, Jul-2022 [Online]. Available: https: //stackoverflow.com/questions/13039392/csv-list-index-out-of-range
- [18] "Visualize data from CSV file in Python." Web Page Geeks for Geeks, Mar-2021 [Online]. Available: https://www.geeksforgeeks.org/visualize-data-from-csv-file-in-python
- [19] "glob Filename Pattern Matching PyMOTW 3." Web Page, Oct-2021 [Online]. Available: https: //pymotw.com/3/glob/index.html
- [20] "mmap Memory-map Files PyMOTW 3." Web Page, Oct-2021 [Online]. Available: https://pymo tw.com/3/mmap/index.html
- [21] "pickle Object Serialization PyMOTW 3." Web Page, Oct-2021 [Online]. Available: https://pymo tw.com/3/pickle/index.html
- [22] "shelve Persistent Storage of Objects PyMOTW 3." Web Page, Oct-2021 [Online]. Available: https://pymotw.com/3/shelve/index.html
- [23] "First Steps FastAPI." Web Page, Jul-2022 [Online]. Available: https://fastapi.tiangolo.com/tut orial/first-steps
- [24] "Path Parameters FastAPI." Web Page, Jul-2022 [Online]. Available: https://fastapi.tiangolo.c om/tutorial/path-params

- [25] "FastAPI in Containers Docker FastAPI." Web Page, Jul-2022 [Online]. Available: https://fast api.tiangolo.com/deployment/docker
- [26] "Testing FastAPI." Web Page, Jul-2022 [Online]. Available: https://fastapi.tiangolo.com/tutoria l/testing/#using-testclient
- [27] "Async Tests FastAPI." Web Page, Jul-2022 [Online]. Available: https://fastapi.tiangolo.com/a dvanced/async-tests
- [28] "A Thread-Safe FIFO Implementation of a Pythin Queue." Web Page, Oct-2021 [Online]. Available: https://pymotw.com/3/queue/index.html
- [29] "Priority Queue in Python." Web Page, May-2022 [Online]. Available: https://www.geeksforgeek s.org/priority-queue-in-python
- [30] "Matplotlib Visualization with Python." Web Page, Jul-2022 [Online]. Available: https://matplotlib.org
- [31] "Matplotlib 3.5.2 Documentation." Web Page, Jun-2022 [Online]. Available: https://matplotlib.org/stable/api/pyplot_summary.html
- [32] "What Is Matplotlib In Python? How to use it for plotting?" Web Page at Active State, Jul-2022 [Online]. Available: https://www.activestate.com/resources/quick-reads/what-is-matplotlibin-python-how-to-use-it-for-plotting
- [33] "Bar Plot in Matplotlib." Web Page at Geeks for Geeks, Mar-2021 [Online]. Available: https: //www.geeksforgeeks.org/bar-plot-in-matplotlib
- [34] "API reference seaborn 0.11.2 documentation." Web Page, Jul-2022 [Online]. Available: https: //seaborn.pydata.org/api.html
- [35] "Python Seaborn Tutorial GeeksforGeeks." GeeksforGeeks, Mar-2022 [Online]. Available: https: //www.geeksforgeeks.org/python-seaborn-tutorial
- [36] "Introduction to Seaborn Python GeeksforGeeks." GeeksforGeeks, Jun-2020 [Online]. Available: https://www.geeksforgeeks.org/introduction-to-seaborn-python
- [37] "Plotting graph using Seaborn | Python GeeksforGeeks." GeeksforGeeks, Jul-2022 [Online]. Available: https://www.geeksforgeeks.org/plotting-graph-using-seaborn-python
- [38] "Seaborn load_dataset." Stack Overflow, Jul-2022 [Online]. Available: https://stackoverflow.co m/questions/30336324/seaborn-load-dataset

- [39] mwaskom, "seaborn-data." GitHub, Jul-2022 [Online]. Available: https://github.com/mwask om/seaborn-data/blob/master/planets.csv
- [40] "Bokeh." Web Page, May-2022 [Online]. Available: http://docs.bokeh.org
- [41] "Plotting with basic glyphs." Web Page, May-2022 [Online]. Available: http://docs.bokeh.org/en/ latest/docs/user_guide/plotting.html
- [42] "Bokeh documentation." Web Page, May-2022 [Online]. Available: http://docs.bokeh.org/en/la test
- [43] "Bokeh Figure Documentation." Web Page, May-2022 [Online]. Available: https://docs.bokeh.o rg/en/latest/docs/reference/plotting/figure.html
- [44] "Bokeh Exporting Plots." Web Page, May-2022 [Online]. Available: https://docs.bokeh.org/en/la test/docs/user_guide/export.html
- [45] "Pandas DataFrame Plot Bar." Web Page, Jun-2022 [Online]. Available: https://pandas.pydata. org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.bar.html
- [46] "Pandas Dataframe Plot Line." Web Page, Jun-2022 [Online]. Available: https://pandas.pydata. org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.line.html
- [47] "Pandas Dataframe Plot Pie." Web Page, Jun-2022 [Online]. Available: https://pandas.pydata.or g/pandas-docs/stable/reference/api/pandas.DataFrame.plot.pie.html
- [48] "TensorFlow Anaconda documentation." Web Page, Jul-2022 [Online]. Available: https://docs.a naconda.com/anaconda/user-guide/tasks/tensorflow
- [49] "TensorFlow on Rivanna the University of Virginia Research Computing Portal." Web Page, Jul-2022 [Online]. Available: https://www.rc.virginia.edu/userinfo/rivanna/software/tensorflow
- [50] "Software Containers the University of Virginia Research Computing Portal." Web Page, Jul-2022 [Online]. Available: https://www.rc.virginia.edu/userinfo/rivanna/software/containers