

PROCEEDINGS	FALL2019	ENGINEERING	CLOUD

COMPUTING

Gregor	von	Laszewski

(c)	Gregor	von	Laszewski,	2018,	2019

PROCEEDINGS	FALL2019	ENGINEERING	CLOUD

COMPUTING

1	PROJECTS
1.1	Manage	Files	Across	Cloud	Providers	☁�
1.1.1	Abstract
1.1.2	Introduction
1.1.3	Requirements
1.1.4	Architecture
1.1.5	Design
1.1.6	Implementation
1.1.6.1	AWS	access	from	Python:
1.1.6.2	Google	Cloud	Platform:
1.1.6.3	MongoEngine	GridFS

1.1.7	Dataset
1.1.8	Conclusion
1.1.9	Acknowledgement
1.1.10	References

1.2	Explore	OpenFaaS	Development	and	Deployment	Aspects	☁�
1.2.1	Abstract
1.2.2	Introduction
1.2.2.1	Micro-Services
1.2.2.2	API	Gateways
1.2.2.3	Serverless
1.2.2.4	OpenFaaS

1.2.3	Requirements
1.2.4	Design
1.2.4.1	Neural	Network
1.2.4.2	Deep	Neural	Network
1.2.4.3	Convolutional	Neural	Network	(CNN)

1.2.5	Architecture
1.2.6	Dataset
1.2.7	Implementation
1.2.7.1	 Install	 Docker	 Swarm	 (Single-Node	 Cluster),	 Docker	 and
OpenFaaS

1.2.7.2	Trouble	Shooting
1.2.7.3	Build	and	deploy	a	serverless	OpenFaaS	function
1.2.7.3.1	Get	FaaS-CLI
1.2.7.3.2	Build,	deploy	and	push	to	Docker	Hub
1.2.7.3.3	Testing	OpenFaaS	function
1.2.7.3.3.1	Test	Request	:	1
1.2.7.3.3.2	Test	Request	:	2

1.2.7.4	Deploying	to	AWS
1.2.7.4.1	Setup	AWS	Instance
1.2.7.4.2	Setting	up	Kubernetes	on	AWS
1.2.7.4.3	Deploying	OpenFaas	on	Kuberetes	using	faas-netes

1.2.7.5	Deploying	to	Raspberry	PI	Clusters
1.2.7.5.1	Burn	3	Raspbery	PI	clusters	thru	cm-burn
1.2.7.5.2	Steps	to	setup	OpenFass	in	Rasberry	PI
1.2.7.5.3	Install	Python	Libraries

1.2.7.6	Project	Files
1.2.8	Conclusion
1.2.9	Team	Members	and	Work	Breakdown
1.2.10	Acknowledgement

1	PROJECTS

1.1	MANAGE	FILES	ACROSS	CLOUD	PROVIDERS	☁�
Richa	Rastogi
rirastog@iu.edu
Indiana	University
hid:	fa18-516-18
github:	☁�

Keywords:	 Multi-cloud	 data	 service,	 Cloud	 Computing,	 Python,	 Open	 API,
Cloud	Providers,	MongoDB,	Swagger

1.1.1	Abstract

The	goal	of	this	project	is	to	manage	files	across	different	cloud	providers.	There
are	many	cloud	providers	where	we	can	store	data	in	form	of	files	like	Amazon
AWS,	 Microsoft	 Azure,	 Google	 cloud,	 etc.	 Here	 we	 are	 going	 to	 build	 an
OpenAPI	to	manage	these	files,	operations	like	copy,	upload,	download	or	delete
from	any	provider.	This	system	is	self	sufficient	to	work	as	a	file	manager.

1.1.2	Introduction

The	objective	of	this	project	is	to	manage	data	across	different	cloud	providers.
We	are	going	to	build	an	RESTFUL	OpenAPI	for	managing	the	data	between	all
the	 cloud	 storages.	We	will	 analyse	how	 these	different	 clouds	work	 and	 then
build	python	methods	 to	handle	data	across	 them.	Final	 step	will	be	 to	expose
these	functionalities	as	a	RESTFUL	API.	This	way	we	can	also	take	advantage
of	cloud	providers	for	cheaper	solutions	for	storage	by	dividing	the	data	across
them.	Since	 this	project	has	 its	own	MongoDB	and	User	profiling	so	 it	can	be
used	a	file	manager	in	itself.

1.1.3	Requirements

https://github.com/cloudmesh-community/fa18-516-18/blob/master/project-report/report.md
https://github.com/cloudmesh-community/fa18-516-18/blob/master/project-report/report.md

This	 project	 requires	 knowledge	 about	 Cloud	 Providers	 like	 AWS,	 Azure,
Google	Cloud,	etc.	*	This	project	 is	using	Amazon	AWS	and	Google	cloud	as
two	cloud	providers	and	their	storage	functionality.	We	can	expand	this	*	This
also	 needs	 a	 database	 so	 we	 are	 using	MongoDB	 through	MongoEngine	 and
store	the	files	and	User	data	in	it.	*	Overall	functionality	can	be	accesses	through
console	or	RESTFUL	OpenAPI	which	is	built	using	Flask	and	Swagger.

1.1.4	Architecture

Please	 refer	 to	 below	 diagram	 #fig:fa18-516-18_Architecture.png	 for
architecture	of	this	project.

Figure	1:	Architecture

1.1.5	Design

This	 project	 involves	 developing	 a	 RESTFUL	 API	 to	 manage	 files.	 We	 can
perform	following	operations	like	upload,	download,	list,	copy,	rsync	and	delete.
We	can	also	this	project	to	store	files	in	MongoDB	and	assign	specific	User	Role
permissions	to	access	the	files.

The	 very	 first	 thing	 required	 for	 that	 is	 to	 create	 accounts	 in	 AWS	 and
Google(Since	those	are	the	two	providers	we	are	using).
Then	use	their	API	Keys	to	connect	to	these	providers	through	Python	code.
After	 we	 have	 a	 connection,	 we	 use	 their	 APIs	 to	 access	 the	 bucket	 by
providing	the	name	through	Yaml	file/API	input.
Now	since	we	have	the	bucket,	we	can	list,	download	or	upload	the	files.
There	 is	 Command	 console	 from	 where	 we	 can	 execute	 these	 functions
directly	using	console	or	script	file.
On	top	of	that	there	is	an	open	API	built	 to	perform	these	functions	using
REST.
We	also	have	MongoDB	storing	the	downloaded	files.

1.1.6	Implementation

This	project	is	using	following	technologies	for	implementation:	*	Python	3.7.0
for	python	code	development	*	Swagger	2.0	for	writing	API	specification.	This
specification	 describes	REST	 endpoints	 for	managing	 files	 across	 providers.	 *
Python	flask	framework	which	consumes	the	OpenAPI	specification	and	directs
the	endpoints	 to	Python	functions	by	building	a	RESTful	app.	*	MongoEngine
as	a	Document-Object	Mapper	for	working	with	MongoDB	from	Python.

Enable	a	virtual	environment	so	that	all	installations	can	be	done	specifically	in
that	env.

1.1.6.1	AWS	access	from	Python:

Install	apache-libcloud	by	“pip	install	apache-libcloud”
Follow	 instructions	 to	 create	 an	 AWS	 account	 -
https://github.com/cloudmesh-
community/book/blob/master/chapters/iaas/aws/aws.md
Select	S3	from	Services	and	create	a	bucket
To	access	 this	bucket,	go	to	IAM	and	create	a	user	and	then	create	a	new
Access	Key	in	“Security	Credentials”
While	creating	this	key,	system	will	promt	to	download	pem	file.	Save	that
pem	file	onto	your	working	machine.

1.1.6.2	Google	Cloud	Platform:

Install	“pip	install	google-cloud-storage”
pip	install	google-auth	google-auth-httplib2
pip	install	–upgrade	google-api-python-client
Create	an	account	on	Google	Cloud	by	going	to	https://cloud.google.com/
Create	a	new	Project	from	the	top	of	the	page.
Create	a	new	storage	bucket	in	google	cloud,	select	Storage	->	Storage	->
Browser
To	 access	 this	 bucket	 now,	 follow
https://cloud.google.com/storage/docs/reference/libraries

python3	-m	virtualenv	/home/richa/venv/				//to	install	venv

source	/home/richa/venv/bin/activate								//to	activate	venv

Now	my	console	looks	like:

(venv)	(3.7.0)	richa@richa-VirtualBox:~$

This	will	download	a	JSON	file	in	your	working	VM	and	use	that	file	for
authentication	to	access	Google	Cloud	Storage.

All	 the	dependencies	can	be	 installed	easily	by	running	requirements.txt	 inside
project-code	so	no	need	to	do	any	pip	install.

AWS	and	Google	Cloud	specific	 functionality	python	 files	are	under	directory
structure	 project-code/cloudmesh/data.	 cloudmesh-data.yaml	 is	 the	 yaml	 file
holding	 all	 the	 information	 about	 these	 cloud	 setup.	 Aws_setup.py	 and
google_cloud_setup.py	 uses	 this	 yaml	 file	 to	 authenticate	 the	 cloud	 providers
and	setup	the	connection	to	the	cloud	services.

It	also	has	command.py	under	here	to	run	the	functionality	from	console	passing
in	relevant	input.	To	execute	commands	from	console	using	cmdata	commands,
we	need	to	setup	cmdata	by	running	in	project-code	dir:

Now	 we	 can	 run	 all	 cmdata	 commands	 as	 given	 below.	 We	 can	 also	 test	 if
cmdata	is	working	by	running	a	test	command:

	pip	install	-r	requirements.txt

	pip	install	.

	cmdata	test

Usage:

		cmdata	data	list	[--format=FORMAT]

		cmdata	set	provider=PROVIDER

		cmdata	set	dir=BUCKET

		cmdata	data	add	PROVIDER	FILENAME

		cmdata	data	get	PROVIDER	FILENAME	USER_UUID

		cmdata	data	ls	PROVIDER

		cmdata	data	copy	FILENAME	PROVIDER	DEST

		cmdata	data	rsync	FILENAME	SOURCE	DEST

		cmdata	data	del	PROVIDER	FILENAME

		cmdata	update	user	USER	file	FILENAME

		cmdata	(-h	|	--help)

		cmdata	--version

Options:

		-h	--help					Show	this	screen.

		--version					Show	version.

		--config						Location	of	a	cmdata.yaml	file

Description:

				cmdata	data	ls	PROVIDER

								Description:	CM	command	to	list	all	the	files	in	a	Provider's	bucket

				cmdata	data	add	PROVIDER	FILENAME

								Description:	CM	command	to	upload	a	file	from	local	directory	to	the	Provider's	bucket

				cmdata	data	get	PROVIDER	FILENAME	USER_UUID

								Description:	CM	command	to	download	a	file	from	the	Provider's	bucket	to	a	local	directory

We	also	have	MongoDB	installed	to	save	the	downloaded	files	into	the	database.
We	 are	 using	MongoEngine	 as	 Document-Object	Mapper	 to	 add	 records	 and
save	the	file	as	a	FileField	into	DB.	File	is	stored	into	MongoDB	using	GridFS.

1.1.6.3	MongoEngine	GridFS

GridFS	is	a	specification	for	storing	and	retrieving	files	into	MongoDB.

Instead	of	storing	a	file	in	a	single	document,	GridFS	divides	the	file	into	parts,
or	 chunks,	 and	 stores	 each	 chunk	 as	 a	 separate	 document.	By	 default,	GridFS
uses	a	default	chunk	size	of	255	kB;	that	is,	GridFS	divides	a	file	into	chunks	of
255	kB	with	the	exception	of	the	last	chunk.	The	last	chunk	is	only	as	large	as
necessary.	Similarly,	files	that	are	no	larger	than	the	chunk	size	only	have	a	final
chunk,	using	only	as	much	space	as	needed	plus	some	additional	metadata.

GridFS	uses	two	collections	to	store	files.	One	collection	stores	the	file	chunks,
and	the	other	stores	file	metadata.	The	section	GridFS	Collections	describes	each
collection	in	detail.

When	 you	 query	 GridFS	 for	 a	 file,	 the	 driver	 will	 reassemble	 the	 chunks	 as
needed.	You	can	perform	range	queries	on	files	stored	through	GridFS.	You	can
also	access	information	from	arbitrary	sections	of	files,	such	as	to	“skip”	to	the
middle	of	a	video	or	audio	file.

GridFS	is	useful	not	only	for	storing	files	that	exceed	16	MB	but	also	for	storing
any	 files	 for	which	you	want	access	without	having	 to	 load	 the	entire	 file	 into
memory.	See	also	When	to	Use	GridFS.

								and	then	save	that	file	to	MongoDB	with	the	username	assigned

				cmdata	data	copy	FILENAME	PROVIDER	DEST

								Description:	CM	command	to	copy	a	file	from	one	Provider's	bucket	to	another

				cmdata	data	del	PROVIDER	FILENAME

								Description:	CM	command	to	delete	a	file	from	a	Provider's	bucket

Example:

			cmdata	data	ls	google_cloud

			cmdata	data	add	google_cloud	abc.txt

			cmdata	data	get	google_cloud	abc.txt	richa

			cmdata	data	copy	xyz.txt	AWS	GOOGLE

			cmdata	data	del	google_cloud	abc.txt

			

This	File	database	 table	 structure	 is	 read	 from	project-code/file.yml	definitions
and	it	has	a	primary	key	as	the	name	of	the	file	so	that	we	can	search	based	on
this	 field.	 This	 also	 has	 user_uuid	 field	 to	 provide	 specific	 user	 access	 to	 the
files.

Similarly	we	have	a	User	table	to	store	Users	with	their	roles	and	group.

This	project	 also	has	RESTFUL	APIs	 to	perform	all	 the	 above	operations	 and
their	 Swagger	 UI	 looks	 like	 below.	 For	 File	 APIs,	 please	 refer	 to	 screenshot
below	for	Swagger	UI	for	File	APIs	(refer	to	FileSwaggerAPI.png).

class	File(Document):

				name	=	StringField(primary_key=True)

				endpoint	=	StringField()

				checksum	=	StringField()

				size	=	StringField()

				timestamp	=	DateTimeField(default=datetime.datetime.now)

				last_modified	=	DateTimeField(default=datetime.datetime.now)

				user_uuid	=	StringField()

				file_content	=	FileField()

Figure	2:	FileSwaggerAPI

API	Path Type Description Input
Parameters

/cloudmesh/files?service=
{provider} GET

Returns	all
files	from	a
specific
provider

Query	Param:
Provider	name

/cloudmesh/file?service=
{provider}&filename=
{filename}&user_uuid={user}

GET

Returns	a
file	for	a
specifc
provider

Query	Param:
Provider
Name,
filename,
user_uuid

/cloudmesh/file?service=
{provider}&filename=
{filename}

POST
Upload	a
file	to	a
provider

Query	Param:
Provider
name,filename

/cloudmesh/file/copy?service=
{provider}&filename=
{filename}&dest={destination}

POST
Copy	a	file
to	a
provider

Query	Param:
Filename,
Provider,
destination

/cloudmesh/file/rsync?service=
{provider}&filename= POST

Rsync	a	file
to	another

Query	Param:
Filename,
Provider,

{filename}&dest={destination} directory destination

/cloudmesh/file/delete?service=
{provider}&filename=
{filename}

DELETE
Delete	a	file
from	a
directory

Query	Param:
Filename,
Provider

For	User	APIs,	please	refer	to	screenshot	below	for	Swagger	UI	for	User	APIs
(refer	to	UserSwaggerAPI.png).

Figure	3:	UserSwaggerAPI

API	Path Type Description Input
Parameters

/cloudmesh/user/profile GET Returns	all
profiles NONE

/cloudmesh/user/profile PUT Create	a	new
profile

Body:	Profile
Object

/cloudmesh/user/profile/{uuid} GET

Returns	the
profile	of	a	user
while	looking	it
up	with	the
UUID

Path	Param:
UUID

1.1.7	Dataset

REST	API	Output	 for	 getting	 files	 list	 (refer	 to	 FileListAPIOutput.PNG)	API
URL	-	http://localhost:5000/cloudmesh_data/files?service=google_cloud

Figure	4:	FileListAPIOutput

Database	records	for	File	table.	This	shows	that	file_content	is	stored	in	another
table	as	per	GridFS	described	above	in	fs.chunks	and	fs.files:

Database	records	for	User	table.

{'_id':	'MapReduce.docx',	'endpoint':	'AWS',	'checksum':	'2c716d77f0916df41147f16c05c91e10',	'size':	'149.5	KB',	'timestamp'

{'_id':	'aws_lambda.png',	'endpoint':	'AWS',	'checksum':	'a73e3d8449ab6e7366a7b1e7f24dab35',	'size':	'99.6	KB',	'timestamp'

{'_id':	'11111',	'username':	'richa.rastogi',	'group':	'test',	'role':	'test',	'resource':	'test',	'context':	'test',	'description'

1.1.8	Conclusion

The	main	objective	of	this	project	was	to	gain	knowledge	and	understanding	of
different	 cloud	 providers	 and	 create	 RESTFUL	 APIs	 using	 OpenAPI
architecture	 using	 either	 flask	 or	 Eve	 and	 then	 to	 use	MongoDB	 database	 to
manage	 this	 data	 coming	 in	 from	 cloud	 providers.	 There	 were	 several	 other
technologies	been	used	to	bring	this	whole	project	together.

This	 project	 can	 be	 enhanced	 even	 further	 by	 including	 many	 other	 cloud
providers	like	Openstack,	Azure	etc.	and	all	these	clouds	can	perform	operations
within	themselves	which	can	reduce	costs	for	certain	people	since	they	will	not
be	 exceedingly	 dependent	 on	 only	 just	 one	 provider.	 Since	 this	 project	 has	 its
own	access	and	database	system	enabled	so	this	can	be	used	as	a	file	manager	in
itself.

1.1.9	Acknowledgement

I	 am	 very	 thankful	 to	 Professor	 Gregor	 von	 Laszewski	 for	 helping	 me
throughout	this	project	development	as	I	am	new	to	all	the	technologies	used	in
this	 project.	 I	 also	 took	 help	 from	 nist	 and	 cm	 projects	 to	 understand	 the
OpenAPI	development	using	flask.

1.1.10	References

[1]	https://github.com/cloudmesh-community/nist/tree/master/services
[2]	https://github.com/cloudmesh-community/cm/tree/master/cm4

1.2	EXPLORE	OPENFAAS	DEVELOPMENT	AND	DEPLOYMENT

ASPECTS	☁�
Murali	Cheruvu,	Anand	Sriramulu
mcheruvu@iu.edu,	asriram@iu.edu
Indiana	University
hid:	fa18-516-11	fa18-516-23
github:	☁�
code:	☁�

https://github.com/cloudmesh-community/fa18-516-11/blob/master/project-report/report.md
https://github.com/cloudmesh-community/fa18-516-11/blob/master/project-report/report.md
https://github.com/cloudmesh-community/fa18-516-11/blob/master/project-code/readme.md

Keywords:	OpenFaaS,	Serverless,	Micro-Services,	Function-as-a-service	(FaaS)

1.2.1	Abstract

Explore	creating	micro-services	using	OpenFaaS	that	makes	serverless	functions
simple	 for	 containers	 like	 Docker	 and	 Kubernetes.	 Integrate	 OpenFaaS
serverless	 functions	 into	 public	 cloud	 offerings	 such	 as,	 AWS	 and	 Azure,	 to
make	them	even	better.

1.2.2	Introduction

Goals	of	this	project	is	to	learn	how	to	create	cloud-native	micro-services	using
server-less	concepts	for	better	scalability	and	cheaper	to	maintain.	Function-as-a-
service	(FaaS)	methodology	allows	to	decouple	each	functionality	from	the	rest
of	the	application,	for	better	support,	isolated	deployment	and	scalability	at	each
function	level.	We	will	use	OpenFaaS,	an	open	source	alternative	framework	to
develop	 and	 deploy	micro-services	 as	 FaaS	 in	 cloud-agnostic	 way.	 OpenFaaS
has	 an	 opiniated	 way	 of	 developing	 FaaS	 and	 deploying	 them	 to	 achieve	 the
required	scalability	without	much	depending	on	the	 infrastructure	of	 the	public
cloud	offerings,	using	container	concepts	wrapped	around	our	FaaS	functions.	In
the	 context	 of	 developing	 loosely	 couple	 components,	we	 can	 interchangeably
use	micro-service	for	function-as-a-service	(FaaS).

Let	us	introduce	some	of	the	key	concepts	that	are	related	to	the	function-as-a-
service.

1.2.2.1	Micro-Services

Micro-Services	 is	 a	 new	 paradigm	 in	 the	 software	 architecture	 to	 break	 down
complex	 monolithic	 applications	 into	 more	 manageable	 and	 decoupled
components	 that	 can	 be	 created	 and	 supported	 in	 silos.	 Loosely	 coupled
components	offer	scalability	and	also	we	can	use	programming-of-choice	based
on	 the	 nature	 and	 complexity	 of	 the	 component,	 anywhere	 from	 advanced
Object-Oriented	Programming	(OOP)	languages	like	Java	and	C#.net,	to	modern
functional-programming	(FP)	languages	like	Scala	or	Python.	Deploying	micro-
services	 can	 be	 as	 flexible	 as	 deploying	 each	 individual	 functionality	 as	 a

separate	 micro-service	 to	 grouping	 of	 related	 micro-services	 into	 one
deployment	package	[3].	Micro-Services,	targeting	for	web-based	interfaces,	can
be	implemented	using	simple	REST-based	API	methodology.

1.2.2.2	API	Gateways

Micro-Services	offer	flexibility	and	scalability	but	they	bring	complexity	into	the
deployment	 and	 support.	 Too	 many	 micro-services	 can	 create	 confusion	 in
discovering	them	and	also,	client	applications	may	have	to	make	multiple	micro-
service	 calls,	 hence	 create	 more	 network	 traffic	 even	 to	 populate	 a	 single
webpage.	 As	 an	 example,	 Amazon	 uses	 lots	 of	 micro-services	 to	 display	 a
typical	product	 search	 result	webpage.	To	 reduce	 the	network	 round-trips,	 it	 is
advised,	to	create	a	gateway	-	API	gateway,	so	that	clients	make	unified	calls	to
the	gateway	and	all	 the	 related	micro-services	 to	 fulfill	a	 request	will	be	made
within	 the	 server	 and	 the	 results	 of	 these	micro-services	 are	 bundled	 into	 one
result,	 hence	 reduce	 the	number	of	 calls	 to	make	 [4].	Cloud	Offerings	 such	as
Microsoft	Azure	 and	AWS	offer	API	Gateways	with	 automatic	API	discovery
and	quota-based	usage	along	with	lots	of	DevOp	tools	for	continuous	monitoring
the	 scalability,	 performance	and	health-check	of	 the	micro-services.	OpenFaaS
has	built-in	API	Gateway	and	integrates	well	with	continuous	monitoring	 tools
such	as	Grafana	and	Prometheus	[5].

1.2.2.3	Serverless

Serverless	is	the	new	methodology	that	cloud	providers	such	as	AWS,	Azure	or
Google	 Cloud	 brought	 to	 simplify	 the	 deployment,	 execution	 and	 support	 of
micro-services.	Cloud	providers	 take	care	 the	responsibility	of	 the	deployment,
execution	of	the	code	and	supporting	-	monitoring,	tracking	and	notifying	errors,
auto-scaling	 (up	 or	 down)	 and	 performance	metrics.	Application	 providers	 are
responsible	 to	 develop	 in	 a	 cloud-native	 fashion	 and	 leave	 the	 rest	 of	 the
responsibilities	to	the	cloud	providers.	AWS	Lambda,	Azure	Functions,	Google
Functions	are	serverless	offerings	 that	are	available	 today	with	high	scalability
turned	on	and	cheaper	to	host	such	serverless	functions	[6].

1.2.2.4	OpenFaaS

OpenFaaS	 (Functions	as	 a	Service)	 is	 a	 framework	 for	 creating	micro-services
that	 can	 be	 hosted	 in	 containers	 like	 Docker	 or	 Kubernetes	 and	 make	 these
services	 ready	 to	 be	 served	 in	 a	 serverless	 fashion	 [7].	 OpenFaaS	 can	 easily
deployed	 into	 all	 the	popular	public	 cloud	providers	 such	as	AWS,	Azure	 and
Google	Cloud.

![8](images/open-faas.png){#fig:OpenFaaS}

1.2.3	Requirements

This	project	has	 two	goals	 -	 (1)	How	 to	deploy	machine	 learning	algorithm	 to
production	and	make	it	to	work	as	serverless	function	to	get	best	scalability	and
(2)	Explore	OpenFaaS	and	related	tools	to	develop,	test	and	deploy	onto	public
cloud	providers	such	as	Azure,	AWS	and	Google	Cloud.

High	 level	 requirements	 include:	 setting	 up	 OpenFaaS	 locally	 within	 the
development	 environment	 in	 Windows	 and	 also	 create	 deployable	 aspects:
containerized	OpenFaaS	to	be	able	to	deploy	to	public	cloud	offerings	including
AWS,	 Azure	 and	 Google	 Cloud.	 Create	 python	 based	 project	 exploring	 high
level	 concepts	of	 serverless/micro-services	 for	web.	Explore	 container	 features
in	the	process.

Development	Environment:	Windows	10	Enterprise
Install	 Docker	 Community	 Edition	 and	 Docker	 Swarm	 with	 single-node
cluster
Setup	developer	account	with	Docker	Hub	for	publishing	Docker	Images	on
the	internet
Install	OpenFaaS	CLI	-	command	line	interface	for	OpenFaaS
Deploy	OpenFaaS	 into	 the	 development	 environment	 to	make	 it	 ready	 to
use
Install	Python	and	related	libraries	to	make	it	ready	for	the	actual	project	for
machine	 learning	algorithms	 to	 run	and	also	write	OpenFaaS	 functions	 in
python.
Write	 Python	 based	 code	 for	 object	 (image)	 detection	 using	 Convoluted
Deep	Neural	Network	(CNN)	algorithms
Train	the	model	using	around	20,000	images	of	dogs	and	cats	provided	by
one	of	Kaggle	competition	[9].
create	OpenFaaS	 function	 to	 predict	 the	uploaded	 image	 -	whether	 it	 is	 a

dog	or	cat
create	 another	 OpenFaaS	 function	 to	 detect	 the	 uploaded	 image	 as	 what
animal	using	pre-trained	model	by	Keras	library.

1.2.4	Design

Create	 image	 object	 detection	 and	 classification	 model	 using	 Convolutional
Neural	Network	by	exploring	very	small	number	of	training	examples,	from	the
dataset	of	20,000	images	of	dogs	and	cats,	using	Python	libraries	such	as	Keras
and	Tensorflow.	We	will	train	the	small	neural	network	as	a	baseline	and	apply
fine-tuning	 of	 an	 existing	 pre-trained	 network	 provided	 by	 popular	 VGGNet
image	 network	 [10].	 We	 will	 provide	 some	 background	 on	 the	 concepts	 of
neural	network	to	understand	the	project	domain.

1.2.4.1	Neural	Network

Neural	Network	is	modeled	after	the	human	brain,	specifically	the	way	it	solves
complex	 problems.	 Perceptron,	 the	 first	 generation	 neural	 network,	 created	 a
simple	mathematical	model	or	a	function,	mimicking	neuron	-	the	basic	unit	of
the	 brain,	 by	 taking	 several	 binary	 inputs	 and	 produced	 single	 binary	 output.
Sigmoid	Neuron	improved	learning	by	giving	some	weightage	to	the	input	based
on	 importance	of	 the	corresponding	 input	 to	 the	output	 so	 that	 tiny	changes	 in
the	output	due	to	the	minor	adjustments	in	the	input	weights	(or	biases)	can	be
measured	effectively.	Neural	Network	 is,	a	directed	graph,	organized	by	 layers
and	 layers	 are	 created	by	number	 of	 interconnected	neurons	 (or	 nodes).	Every
neuron	in	a	layer	is	connected	with	all	the	neurons	from	the	previous	layer;	there
will	be	no	interaction	of	neurons	within	a	layer.	As	shown	in	+Figure	5,	a	typical
Neural	Network	 contains	 three	 layers:	 input	 (left),	 hidden	 (middle)	 and	 output
(right)	[11].	The	middle	layer	is	called	hidden	only	because	the	neurons	of	this
layer	 are	 neither	 the	 input	 nor	 the	 output.	 However,	 the	 actual	 processing
happens	 in	 the	 hidden	 layer	 as	 the	 data	 passes	 through	 layer	 by	 layer,	 each
neuron	acts	as	an	activation	function	to	process	the	input.	The	performance	of	a
Neural	Network	is	measured	using	cost	or	error	function	and	the	dependent	input
weight	variables.	Forward-propagation	and	backpropagation	are	two	techniques,
neural	 network	 uses	 repeatedly	 until	 all	 the	 input	 variables	 are	 adjusted	 or
calibrated	 to	predict	 accurate	output.	During,	 forward-propagation,	 information
moves	in	forward	direction	and	passes	through	all	the	layers	by	applying	certain

weights	 to	 the	 input	parameters.	Back-propagation	method	minimizes	 the	error
in	the	weights	by	applying	an	algorithm	called	gradient	descent	at	each	iteration
step.

Figure	5:	Neural	Network	[11]

1.2.4.2	Deep	Neural	Network

Deep	 Learning	 is	 an	 advanced	 neural	 network,	 with	 multiple	 hidden	 layers
(thousands	or	even	more	deep),	that	can	work	well	with	supervised	(labeled)	and
unsupervised	 (unlabeled)	 datasets.	 Applications,	 such	 as	 speech,	 image	 and
behavior	 patterns,	 having	 complex	 relationships	 in	 large-set	 of	 attributes,	 are
best	 suited	 for	Deep	Learning	Neural	Networks.	Deep	Learning	vectorizes	 the
input	 and	 converts	 it	 into	 output	 vector	 space	 by	 decomposing	 complex
geometric	 and	 polynomial	 equations	 into	 a	 series	 of	 simple	 transformations.
These	 transformations	 go	 through	 neuron	 activation	 functions	 at	 each	 layer
parameterized	by	 input	weights.	For	 it	 to	be	 effective,	 the	 cost	 function	of	 the
neural	 network	 must	 guarantee	 two	 mathematical	 properties:	 continuity	 and
differentiability.

Figure	6:	Deep	Neural	Network	[11]

1.2.4.3	Convolutional	Neural	Network	(CNN)

Convolutional	Neural	Network	(CNN),	also	called	multilayer	perceptron	(MLP),
is	a	deep	feedforward	network,	consists	of	(1)	convolutional	layers	-	to	identify
the	 features	using	weights	and	biases,	 followed	by	 (2)	 fully	connected	 layers	 -
where	 each	 neuron	 is	 connected	 from	 all	 the	 neurons	 of	 previous	 layers	 -	 to
provide	 nonlinearity,	 sub-sampling	 or	 max-pooling,	 performance	 and	 control
data	overfitting	[12].	CNN	is	used	 in	 image	and	voice	recognition	applications
by	 effectively	 using	 multiples	 copies	 of	 same	 neuron	 and	 reusing	 group	 of
neurons	 in	 several	 places	 to	 make	 them	 modular.	 CNNs	 are	 constrained	 by
fixed-size	vectorized	inputs	and	outputs.

Convolution	Neural	Network	has	two	key	components:	(a)	feature	extraction	-	in
this	 component,	 the	 network	 performs	 a	 series	 of	 convolutions	 (mathematical
operation)	and	pooling	operations	to	create	the	feature-maps,	the	list	of	features
from	 the	 images.	 (b)	 classification	 -	 fully	 connected	 layers	 will	 serve	 as	 a
classifier	on	top	of	these	extracted	features.	They	will	assign	probability	for	the
object	on	the	image	being	what	the	algorithm	predicts	it	is.

Figure	7:	Convolutional	Neural	Network	(CNN)	[13]

1.2.5	Architecture

Computer	vision	is	an	interdisciplinary	field	that	deals	with	how	computers	can
be	 made	 for	 gaining	 high-level	 understanding	 from	 digital	 images	 or	 videos.
Images	 are	 treated	 as	 a	 matrix	 of	 pixel	 values.	 By	 applying	 convolutional,
mathematical	 operation,	 features	 such	 as	 edges,	 brightness	 or	 blur	 can	 be
extracted	as	feature	maps	from	the	images.	This	process	goes	through	series	of
convolutions	followed	by	pooling	to	reduce	the	size	the	of	the	images	for	further
processing.	In	the	end,	various	features	of	the	image	are	flattened	into	vector	and
create	deep	neural	network	to	classify	the	image,	in	our	case,	whether	it	is	a	dog
or	 cat.	 VGGNet	 is	 very	 popular	 image	 network	 that	 reduced	 the	 errors	 in	 the
image	 classification	 and	 improved	 the	 processing	 performance	 from	 the
predecessor	 image	 network	models.	We	 will	 create	 our	 based	 neural	 network
model	 using	 a	 small	 sample	 dataset	 of	 2000	 images	 from	 the	 given	 20,000
images	and	apply	this	on	top	of	the	pre-trained	model	that	is	optimized	based	on
VGGNet	algorithm.	So	that	our	effort	is	incremental	and	minimal.

1.2.6	Dataset

About	 20,000	 images	 of	 dogs	 and	 cats	 are	 provided	 part	 of	 the	 Kaggle
competition.	Dataset	can	be	downloaded	from	HERE.

https://www.dropbox.com/s/lrcq8x8qp7cd4si/train.zip?dl=0

1.2.7	Implementation

1.2.7.1	Install	Docker	Swarm	(Single-Node	Cluster),	Docker	and	OpenFaaS

Prerequisites:	 Windows	 10	 Professional	 or	 Enterprise	 Edition,	 open	 the
command	prompt	in	Administrator	moode
Step	1:	Install	Docker	Community	Edition
Step	2:	Install	Git	Bash	for	pulling	the	latest	OpenFaaS	artifacts	and	all	the
other	software	from	GitHub
Step	3:	Run	docker	 swarm	 init	 to	 set	 up	 the	 single-node	 docker	 swarm
cluster
Step	4:	Create	an	account	with	Docker	Hub,	if	the	created	docker	images	to
be	shared	with	others	through	internet
Step	5:	Run	docker	login	to	make	sure	docker	is	linked	to	your	account
Step	6:	Download	latest	faas-cli.exe	from	HERE
Step	 7:	 Copy	 the	 faas-cli.exe	 to	 *C:folder	 to	 make	 it	 available	 for	 the
command	prompt.	Or	you	will	need	to	add	the	path	of	the	faas-cli.exe	into
the	system	environment	variables
Step	8:	Test	the	faas-cli	using	the	command	-	faas-cli	version
Step	 9:	 Clone	 the	 OpenFaaS	 artifacts	 from	 GitHub	 using	 :	 git	 clone
https://github.com/openfaas/faas
Step	10:	Go	into	the	faas	folder	that	to	checkout	the	git	master	repository	-
cd	faas	and	git	checkout	master
Step	 11:	 Run	 deploy_stack.sh	 –no-auth	 to	 deploy	 the	 latest	 OpenFaaS
into	our	environment
Step	 12:	 Run	 docker	 service	 ls	 to	 verify	 whether	 openfaas	 has	 been
deployed	to	our	environment

1.2.7.2	Trouble	Shooting

If	there	are	any	issues	with	the	docker	and/or	OpenFaaS	functions,	we	can	reset
the	environment	using	the	following	commands

restart	docker	-	to	restart	the	docker
docker	stack	rm	func	-	to	remove	all	the	functions
docker	swarm	leave	–force	-	to	shutdown	the	docker	cluster
docker	swarm	init	-	to	initialize	docker	swarm	cluster

https://store.docker.com/editions/community/docker-ce-desktop-windows
https://github.com/openfaas/faas-cli/releases

{open_faas_github_folder}/deploy_stack.sh	-	to	pull	the	latest	code	from
openfaas	GitHub

1.2.7.3	Build	and	deploy	a	serverless	OpenFaaS	function

1.2.7.3.1	Get	FaaS-CLI

1.2.7.3.2	Build,	deploy	and	push	to	Docker	Hub

1.2.7.3.3	Testing	OpenFaaS	function

1.2.7.3.3.1	Test	Request	:	1

faas	-	OpenFaas	-	tiger

1.2.7.3.3.2	Test	Request	:	2

curl	-sSL	https://cli.openfaas.com	|	sudo	sh

$	cd	fa18-516-11/project-code

$	docker	build	-t	faas-ressnet	.

$	faas-cli	deploy	--image	faas-ressnet	--name	faas-ressnet

$	docker	tag	faas-ressnet	$anandid/faas-ressnet

$	docker	push	$anandid/faas-ressnet

Input:

curl	-X	POST	-H		\

		--data-binary	@data/tiger.png	\

		"http://127.0.0.1:8080/function/faas-resnet"	

Output:

Predicted:	[('n02129604',	'tiger',	0.92411584),	('n02123159',	'tiger_cat',	0.04635064),	('n02391049',	'zebra',	0.017654872

faas	-	OpenFaas	-	cow

1.2.7.4	Deploying	to	AWS

1.2.7.4.1	Setup	AWS	Instance

1.	 Purchased	Spot	Instance	for	Ubuntu	16.04,	and	with	instance	type	we’ll	use
m4.xlarge

2.	 Enabled	Security	group	allowing	ports	22,	31112,	and	6443	for	ingress
3.	 Created	a	key-pair	file,	so	that	we	can	SSH	in	to	the	instance
4.	 Test	the	Instance

1.2.7.4.2	Setting	up	Kubernetes	on	AWS

1.	 Prep	 the	 machine	 by	 installing	 some	 necessary	 components.	 Run	 the
following	 commands	 to	 enter	 superuser	 mode,	 install	 some	 necessary
components	from	this	gist,	then	exit	back	into	the	ubuntu	user.

2.	 Deploy	Kubernetes

Input:

curl	-X	POST	-H		\

		--data-binary	@data/cow.jpg	\

		"http://127.0.0.1:8080/function/faas-resnet"	

Output:

Predicted:	[('n02403003',	'ox',	0.55445725),	('n03868242',	'oxcart',	0.36393312),	('n02109047',	'Great_Dane',	0.035532992

ssh	-i	"faas.pem"	ubuntu@ec2-18-191-176-209.us-east-2.compute.amazonaws.com

$	sudo	su

$	curl	-sSL	https://gist.githubusercontent.com/ericstoekl/1d4372e9398d9cec7ec028629b2c36e2/raw/6f03cf3481c10e3bcf01a495a273a975aaac8ced/gistfile1.sh	

exit

$	sudo	kubeadm	init	--kubernetes-version	stable-1.8

3.	 Networking	layer	for	the	cluster,	to	allow	inter-pod	communication

4.	 To	Allow	container	placement	on	the	master	node	and	confirm	the	cluster	is
running

1.2.7.4.3	Deploying	OpenFaas	on	Kuberetes	using	faas-netes

1.	 Clone	the	node,	Deploy	the	Whole	Stack	and	deploy	OpenFaas

2.	 Install	the	CLI,	deploy	samples

3.	 Pull	docker	image	(OpenFaas	functions)

4.	 Deploy	OpenFaas	Functions

5.	 Test	OpenFaas	function

1.2.7.5	Deploying	to	Raspberry	PI	Clusters

$	kubectl	apply	-f	"https://cloud.weave.works/k8s/net?k8s-version=$(kubectl	version	|	base64	|	tr	-d	'\n')"

$	kubectl	taint	nodes	--all	node-role.kubernetes.io/master-

$	kubectl	get	all	-n	kube-system

$	git	clone	https://github.com/openfaas/faas-netes

$	kubectl	apply	-f	https://raw.githubusercontent.com/openfaas/faas-netes/master/namespaces.yml

$	cd	faas-netes	&&	\

kubectl	apply	-f	./yaml

$	curl	-sL	https://cli.openfaas.com	|	sudo	sh

$	git	clone	https://github.com/openfaas/faas-cli

docker	pull	anandid:faas-resnet

faas-cli	deploy	--image	anandid/faas-resnet	--name	faas-resnet	--gateway	http://18.191.176.209:31112

curl	http://18.191.176.209:31112/function/faas-resnet	--data-binary	@data/tiger.jpg

PI	Cluster	Case	[14]

1.2.7.5.1	Burn	3	Raspbery	PI	clusters	thru	cm-burn

1.2.7.5.2	Steps	to	setup	OpenFass	in	Rasberry	PI

1.	 Install	Docker	using	the	following	utility	script

Note:	the	above	step	can	take	between	2	to	5	minutes

2.	 Run	the	following	command	to	use	Docker	as	non-root	user

3.	 Change	default	Password

$	git	clone	https://github.com/cloudmesh-community/cm-burn

$	cd	cm-burn

$	python	setup.py	install

$	cmburn	create	--group	g1	--names	red[001-003]	--key	c:/users/anand/.ssh/id_rsa.pub	--image	2018-06-27-raspbian-stretch.img	--bootdrive	I	--rootdrive	G	--domain	192.168.1.254	--ip	192.168.1.[111-113]

$	curl	-sSL	https://get.docker.com	|	sh

$	sudo	usermod	pi	-aG	docker

4.	 Logout	and	log	back	to	take	this	effect	for	the	above	2	steps

5.	 Setup	docker	swarm	cluster

Copy	the	output	from	the	above	command	as	like	following,	and	need	to	be	used
in	 other	 PI	 nodes	 to	 join	 the	 cluster	 docker	 swarm	 join	 –token	 SWMTKN-1-
25qnthaepgkcxx9qhfouh7yx0ht23od2shf44bw8tfphibsod8-
b1c8o5ljjetm0vjkmamo3kk9k	192.168.1.111:2377

6.	 Setup	OpenFaas

7.	 Deploy	sample	functions

Other	RPis	will	now	be	instructed	by	Docker	Swarm	to	start	pulling	the	Docker
images	from	the	internet	and	extracting	them	to	the	SD	card.	The	work	will	be
spread	across	all	the	RPis	so	that	none	of	them	are	overworked.

8.	 After	 few	minutes,	 the	 following	 command	will	 provide	 the	 status	 of	 the
functions

9.	 Testing	a	function	to	see	the	scheduled	RPI	for	this	function

10.	 The	Openfaas	functions	can	be	access	via

11.	 Pull	docker	image	(OpenFaas	functions)

12.	 Deploy	the	image	to	the	OpenFaas

$	sudo	passwd	pi

$	docker	swarm	init

$	git	clone	https://github.com/alexellis/faas/

$	cd	faas

$./deploy_stack.armhf.sh

$	watch	'docker	service	ls'

$	docker	service	ps	func_markdown

http://192.168.1.111:8080

docker	pull	anandid:faas-resnet

$	faas-cli	deploy	--image	anandid/faas-resnet	--name	faasresnet	--gateway	http://192.168.1.111:8080

13.	 Test	OpenFaas	function

1.2.7.5.3	Install	Python	Libraries

Following	are	the	steps	used	to	install	Python	libraries:

Install	latest	Anaconda	for	Windows	64-bit	for	Python	3
Once	 Anaconda	 installed,	 use	 the	 Anaconda	 command	 prompt,	 to	 install
Tensorflow	and	Keras
We	 can	 add	 Python	 exe	 folder	 into	 windows	 system	 environment	 path
variable,	so	that	we	can	use	python	from	the	regular	command	prompt
We	 can	 install	 Jupyter	 Notebook	 as	 well,	 given	 we	 are	 using	 Jupyter
notebook	to	write	the	CNN	algorithm	for	the	image	classification
Detailed	steps	are	provided	in	the	installation/deployment	instructions

1.2.7.6	Project	Files

File Description

readme.md Instructions	on	how	to	deploy	and	use
OpenFaaS	Serverless	Functions.

Dockerfile

Docker	Image	file	with	our	OpenFaaS
function	and	all	the	python
dependencies	that	can	be	deployed
onto	typical	public	cloud	providers:
Azure,	AWS,	Google	Cloud.

resnet_pretrained_classify

OpenFaaS	serverless	function	folder
with	related	files	to	classify	the
uploaded	animal	image	using	ResNet
image	network	pre-trained	model
using	Keras	and	Tensorflow	libraries.
The	classification	happens	very
quick,	hence	qualifies	to	be	a
serverless	function.

index.py Entry	python	file	to	call	in	the	docker
image.

curl	http://192.168.1.111:8080/function/faasresnet	--data-binary	@data/tiger.jpg

image_classifier_dogsandcats.ipynb

Jupypter	notebook	with	detailed
analysis	and	exploration	of
Convolutional	Neural	Network	to
train	the	model	using	about	20,000
images	of	dogs	and	cats.	The	saved
model	will	be	used	in	the	OpenFaaS
function	to	test	the	classification	of
the	uploaded	image.	Python	uses
Keras	and	Tensorflow	Neural
Network	to	perform	the	modeling.

classify_pre_trained_model.ipynb

Jupypter	notebook	to	classify	image
of	an	animal	using	ResNet50	pre-
trained	model	through	Keras	and
Tensorflow.

1.2.8	Conclusion

OpenFaaS	facilitates	clean	design,	development,	deployment	and	support	of	the
function-as-a-service	 (micro-services)	 implementations.	 OpenFaaS	 creates	 co-
opetitive	 (co-operation	 and	 competition)	 environment	 with	 public	 cloud
providers.	With	all	the	needed	built-in	methodologies	-	API	Gateway,	FaaS,	etc.
and	 tools	 -	 security,	 logging,	 integrations	with	DevOp	 tools,	etc.,	OpenFaaS	 is
already	 a	 very	 good	 open	 source	 alternative	 for	 building	 micro-services	 and
maturity	 of	 this	 framework	 is	 drastically	 increasing	 with	 growing	 usage
community	 and	 adoption.	 OpenFaaS	 can	 be	 helpful	 to	 host	 variety	 of	 FaaS
functions	 all	 the	way	 from	 http-based	 functions	 to	 complex	 functions	 such	 as
machine	learning	based	predictions	and	classifications.

1.2.9	Team	Members	and	Work	Breakdown

Murali	 Cheruvu	worked	 on	 the	CNN,	OpenFaaS	 function,	Docker	 Image
and	Deploying	Azure	(Single-Node	Cluster)
Anand	 Sriramulu	 worked	 on	 OpenFaaS	 function,	 Docker	 Image	 and
Deploying	to	Raspberry	Pi	(Multi-Node	Cluster)

1.2.10	Acknowledgement

The	 author	 would	 like	 to	 thank	 Dr.	 Gregor	 von	 Laszewski	 and	 the	 Teaching
Assistants	for	their	support	and	valuable	suggestions.	Author	would	also	like	to
thank	authors	listed	in	the	bibliography	along	with	OpenFaas	and	the	community
of	 OpenFaaS	 for	 great	 collaboration	 and	 providing	 invaluable	 documentation
and	sample	projects.

[1]	 “Cloudmesh	 nist	 services.”	 [Online].	 Available:
https://github.com/cloudmesh-community/nist/tree/master/services

[2]	“Cloudmesh	cm	project.”	[Online].	Available:	https://github.com/cloudmesh-
community/cm/tree/master/cm4

[3]	 M.	 Fowler,	 “Micro	 Services.”	 Mar-2014	 [Online].	 Available:
https://martinfowler.com/articles/microservices.html

[4]	 SnartBear,	 “Using	 an	 API	 Gateway	 in	 Your	 Microservices	 Architecture.”
2018	 [Online].	 Available:	 https://smartbear.com/learn/api-design/api-gateways-
in-microservices/

[5]	SnartBear,	 “Monitoring	with	Prometheus	and	Grafana.”	 Jan-2016	 [Online].
Available:	 https://github.com/hashicorp/faas-nomad/wiki/Monitoring-with-
Prometheus-and-Grafana

[6]	A.	Innovations,	“What	is	Serverless?”	[Online].	Available:	https://serverless-
stack.com/chapters/what-is-serverless.html

[7]	 OpenFaaS,	 “OpenFaaS:	 Introduction.”	 [Online].	 Available:
https://docs.openfaas.com/

[8]	 OpenFaaS,	 “Become	 your	 own	 Functions	 as	 a	 Service	 provider	 using
OpenFaaS.”.

[9]	 Kaggle,	 “Dogs	 vs.	 Cats.”	 [Online].	 Available:
https://www.kaggle.com/c/dogs-vs-cats

[10]	F.	Chollet,	“Building	powerful	image	classification	models	using	very	little
data.”.

[11]	 I.	 Goodfellow,	Y.	 Bengio,	 and	A.	 Courville,	Deep	 Learning.	 MIT	 Press,

https://github.com/cloudmesh-community/nist/tree/master/services
https://github.com/cloudmesh-community/cm/tree/master/cm4
https://martinfowler.com/articles/microservices.html
https://smartbear.com/learn/api-design/api-gateways-in-microservices/
https://github.com/hashicorp/faas-nomad/wiki/Monitoring-with-Prometheus-and-Grafana
https://serverless-stack.com/chapters/what-is-serverless.html
https://docs.openfaas.com/
https://www.kaggle.com/c/dogs-vs-cats

2016	[Online].	Available:	http://www.deeplearningbook.org

[12]	Christopher	Olah,	“Conv	Nets:	A	Modular	Perspective.”	Jul-2014	[Online].
Available:	http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

[13]	 M.	 Chang,	 “Applied	 Deep	 Learning	 11/03	 Convolutional	 Neural
Networks.”	 Oct-2016	 [Online].	 Available:
https://www.slideshare.net/ckmarkohchang/applied-deep-learning-1103-
convolutional-neural-networks

[14]	G.	von	Laszewski,	“Raspbery	PI	5	Node	Cluster	Case.”	[Online].	Available:
https://github.com/cloudmesh-community/case

http://www.deeplearningbook.org
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://www.slideshare.net/ckmarkohchang/applied-deep-learning-1103-convolutional-neural-networks
https://github.com/cloudmesh-community/case

	1 PROJECTS
	1.1 Manage Files Across Cloud Providers ☁️
	1.1.1 Abstract
	1.1.2 Introduction
	1.1.3 Requirements
	1.1.4 Architecture
	1.1.5 Design
	1.1.6 Implementation
	1.1.6.1 AWS access from Python:
	1.1.6.2 Google Cloud Platform:
	1.1.6.3 MongoEngine GridFS

	1.1.7 Dataset
	1.1.8 Conclusion
	1.1.9 Acknowledgement
	1.1.10 References

	1.2 Explore OpenFaaS Development and Deployment Aspects ☁️
	1.2.1 Abstract
	1.2.2 Introduction
	1.2.2.1 Micro-Services
	1.2.2.2 API Gateways
	1.2.2.3 Serverless
	1.2.2.4 OpenFaaS

	1.2.3 Requirements
	1.2.4 Design
	1.2.4.1 Neural Network
	1.2.4.2 Deep Neural Network
	1.2.4.3 Convolutional Neural Network (CNN)

	1.2.5 Architecture
	1.2.6 Dataset
	1.2.7 Implementation
	1.2.7.1 Install Docker Swarm (Single-Node Cluster), Docker and OpenFaaS
	1.2.7.2 Trouble Shooting
	1.2.7.3 Build and deploy a serverless OpenFaaS function
	1.2.7.3.1 Get FaaS-CLI
	1.2.7.3.2 Build, deploy and push to Docker Hub
	1.2.7.3.3 Testing OpenFaaS function
	1.2.7.3.3.1 Test Request : 1
	1.2.7.3.3.2 Test Request : 2

	1.2.7.4 Deploying to AWS
	1.2.7.4.1 Setup AWS Instance
	1.2.7.4.2 Setting up Kubernetes on AWS
	1.2.7.4.3 Deploying OpenFaas on Kuberetes using faas-netes

	1.2.7.5 Deploying to Raspberry PI Clusters
	1.2.7.5.1 Burn 3 Raspbery PI clusters thru cm-burn
	1.2.7.5.2 Steps to setup OpenFass in Rasberry PI
	1.2.7.5.3 Install Python Libraries

	1.2.7.6 Project Files

	1.2.8 Conclusion
	1.2.9 Team Members and Work Breakdown
	1.2.10 Acknowledgement

