

INTRODUCTION TO LINUX

Gregor von Laszewski

(c) Gregor von Laszewski, 2018, 2019

INTRODUCTION TO LINUX

1 PREFACE
1.1 Disclaimer ☁

1.1.1 Acknowledgment
1.1.2 Extensions

2 INTRODUCTION
2.1 Linux Shell ☁

2.1.1 History
2.1.2 Shell
2.1.3 The command man
2.1.4 Multi-command execution
2.1.5 Keyboard Shortcuts
2.1.6 bashrc, bash_profile or zprofile
2.1.7 Makefile
2.1.8 chmod
2.1.9 Exercises

2.2 Perl One liners ☁
2.3 Refcards ☁
2.4 Secure Shell ☁

2.4.1 ssh-keygen
2.4.2 ssh-add
2.4.3 SSH Add and Agent

2.4.3.1 Using SSH on Mac OS X
2.4.3.2 Using SSH on Linux
2.4.3.3 Using SSH on Raspberry Pi 3/4
2.4.3.4 Accessing a Remote Machine

2.4.4 SSH Port Forwarding 🅾
2.4.4.1 Prerequisites
2.4.4.2 How to Restart the Server
2.4.4.3 Types of Port Forwarding
2.4.4.4 Local Port Forwarding
2.4.4.5 Remote Port Forwarding
2.4.4.6 Dynamic Port Forwarding

2.4.4.7 ssh config
2.4.4.8 Tips
2.4.4.9 References

2.5 SSH and Bash on Windows ☁
2.5.1 OpenSSH Client on Windows
2.5.2 GitBash

2.5.2.1 Makefiles on Windows
2.5.3 Using SSH from Cygwin
2.5.4 SSH from putty
2.5.5 Chocolatey

2.6 SSH and Bash on Windows ☁
2.6.1 OpenSSH Client on Windows
2.6.2 GitBash

2.6.2.1 Makefiles on Windows
2.6.3 Using SSH from Cygwin
2.6.4 SSH from putty
2.6.5 Chocolatey

2.7 ZSH ☁
2.7.1 Other operating systems
2.7.2 zsh on Windows 10
2.7.3 Exercises ☁

3 REFERENCES

1 PREFACE

Thu Aug 27 20:01:46 EDT 2020 ☁

1.1 DISCLAIMER ☁

This book has been generated with Cyberaide Bookmanager.

Bookmanager is a tool to create a publication from a number of sources on
the internet. It is especially useful to create customized books, lecture notes,
or handouts. Content is best integrated in markdown format as it is very fast
to produce the output.

Bookmanager has been developed based on our experience over the last 3
years with a more sophisticated approach. Bookmanager takes the lessons
from this approach and distributes a tool that can easily be used by others.

The following shields provide some information about it. Feel free to click
on them.

pypipypi v0.2.35v0.2.35 LicenseLicense Apache 2.0Apache 2.0 pythonpython 3.73.7 formatformat wheelwheel statusstatus stablestable buildbuild unknownunknown

1.1.1 ACKNOWLEDGMENT

If you use bookmanager to produce a document you must include the
following acknowledgement.

“This document was produced with Cyberaide Bookmanager
developed by Gregor von Laszewski available at
https://pypi.python.org/pypi/cyberaide-bookmanager. It is in the
responsibility of the user to make sure an author
acknowledgement section is included in your document.
Copyright verification of content included in a book is
responsibility of the book editor.”

https://github.com/cloudmesh-community/book/blob/master/chapters/version.md
https://github.com/cyberaide/bookmanager/blob/master/bookmanager/template/disclaimer.md
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://github.com/cloudmesh/cyberaide-bookmanager/blob/master/LICENSE
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://travis-ci.com/cloudmesh/cyberaide-bookmanager

The bibtex entry is

1.1.2 EXTENSIONS

We are happy to discuss with you bugs, issues and ideas for enhancements.
Please use the convenient github issues at

https://github.com/cyberaide/bookmanager/issues

Please do not file with us issues that relate to an editors book. They will
provide you with their own mechanism on how to correct their content.

@Misc{www-cyberaide-bookmanager,

 author = {Gregor von Laszewski},

 title = {{Cyberaide Book Manager}},

 howpublished = {pypi},

 month = apr,

 year = 2019,

 url={https://pypi.org/project/cyberaide-bookmanager/}

}

https://github.com/cyberaide/bookmanager/issues

2 INTRODUCTION

2.1 LINUX SHELL ☁

 Learning Objectives

Be able to know the basic commands to work in a Linux terminal.
Get familiar with Linux Commands

In this chapter we introduce you to a number of useful shell commands.
You may ask:

“Why is he so keen on telling me all about shells as I do have a beautiful
GUI?”

You will soon learn that A GUI may not be that suitable if you like to
manage 10, 100, 1000, 10000, … virtual machines. A commandline
interface could be mcuh simpler and would allow scripting.

2.1.1 HISTORY

LINUX is a reimplementation by the community of UNIX which was
developed in 1969 by Ken Thompson and Dennis Ritchie of Bell
Laboratories and rewritten in C. An important part of UNIX is what is
called the kernel which allows the software to talk to the hardware and
utilize it.

In 1991 Linus Torvalds started developing a Linux Kernel that was initially
targeted for PC’s. This made it possible to run it on Laptops and was later
on further developed by making it a full Operating system replacement for
UNIX.

https://github.com/cloudmesh-community/book/blob/master/chapters/linux/linux.md

2.1.2 SHELL

One of the most important features for us will be to access the computer
with the help of a shell. The shell is typically run in what is called a
terminal and allows interaction to the computer with commandline
programs.

There are many good tutorials out there that explain why one needs a linux
shell and not just a GUI. Randomly we picked the first one that came up
with a google query. This is not an endorsement for the material we point
to, but could be a worth while read for someone that has no experience in
Shell programming:

http://linuxcommand.org/lc3_learning_the_shell.php

Certainly you are welcome to use other resources that may suite you best.
We will however summarize in table form a number of useful commands
that you may als find even as a RefCard.

http://www.cheat-sheets.org/#Linux

We provide in the next table a number of useful commands that you want to
explore. For more information simply type man and the name of the
command. If you find a useful command that is missing, please add it with
a Git pull request.

.

Command Description

man command manual page for the command

apropos text list all commands that have text in it

ls Directory listing

ls -lisa list details

tree list the directories in graphical form

cd dirname Change directory to dirname

mkdir dirname create the directory

rmdir dirname delete the directory

pwd print working directory

rm file remove the file

cp a b copy file a to b

mv a b move/rename file a to b

http://linuxcommand.org/lc3_learning_the_shell.php
http://www.cheat-sheets.org/#Linux

Command Description

cat a print content of filea

cat -n filename print content of filea with

line numbers

less a print paged content of file a

head -5 a Display first 5 lines of file a

tail -5 a Display last 5 lines of file a

du -hs . show in human readable form the space used by the current directory

df -h show the details of the disk file system

wc filename counts the word in a file

sort filename sorts the file

uniq filename displays only uniq entries in the file

tar -xvf dir tars up a compressed version of the directory

rsync faster, flexible replacement for rcp

gzip filename compresses the file

gunzip filename compresses the file

bzip2 filename compresses the file with

block-sorting

bunzip2 filename uncompresses the file with block-sorting

clear clears the terminal screen

touch filename change file access and modification times or if file does not exist creates file

who displays a list of users that are currently logged on, for each user the login name,
date and time of login, tty name, and hostname if not local are displayed

whoami displays the users effective id see also id

echo -n string write specified arguments to standard output

date displays or sets date & time, when invoked without arguments the current date and
time are displayed

logout exit a given session

exit when issued at the shell prompt the shell will exit and terminate any running jobs
within the shell

kill terminate or signal a process by sending a signal to the specified process usually
by the pid

ps displays a header line followed by all processes that have controlling terminals

sleep suspends execution for an interval of time specified in seconds

uptime displays how long the system has been running

time command times the command execution in seconds

find / [-name] file-name.txt
searches a specified path or directory with a given expression that tells the find
utility what to find, if used as shown the find utility would search the entire drive
for a file named file-name.txt

diff compares files line by line

hostname prints the name of the current host system

which locates a program file in the users path

tail displays the last part of the file

head displays the first lines of a file

top displays a sorted list of system processes

locate filename finds the path of a file

grep ‘word’ filename finds all lines with the word in it

grep -v ‘word’ filename finds all lines without the word in it

chmod ug+rw filename change file modes or Access Control Lists. In this example user and group are
changed to read and write

chown change file owner and group

history a build-in command to list the past commands

sudo execute a command as another user

su substitute user identity

uname print the operating system name

set -o emacs tells the shell to use Emacs commands.

chmod go-rwx file changes the permission of the file

Command Description

chown username file changes the ownership of the file

chgrp group file changes the group of a file

fgrep text filename searches the text in the given file

grep -R text . recursively searches for xyz in all files

find . -name *.py find all files with .py at the end

ps list the running processes

kill -9 1234 kill the process with the id 1234

at que commands for later execution

cron daemon to execute scheduled commands

crontab manage the time table for execution commands with cron

mount /dev/cdrom /mnt/cdrom mount a filesystem from a cd rom to /mnt/cdrom

users list the logged in users

who display who is logged in

whoami print the user id

dmesg display the system message buffer

last indicate last logins of users and ttys

uname print operating system name

date prints the current date and time

time command prints the sys, real and user time

shutdown -h “shut down” shutdown the computer

ping ping a host

netstat show network status

hostname print name of current host system

traceroute print the route packets take to network host

ifconfig configure network interface parameters

host DNS lookup utility

whois Internet domain name and network number directory service

dig DNS lookup utility

wget non-interactive network downloader

curl transfer a URL

ssh remote login program

scp remote file copy program

sftp secure file transfer program

watch command run any designated command at regular intervals

awk program that you can use to select particular records in a file and perform
operations on them

sed stream editor used to perform basic text transformations

xargs program that can be used to build and execute commands from STDIN

cat some_file.json | python -m json.tool quick and easy JSON validator

2.1.3 THE COMMAND MAN

On Linux you find a rich set of manual pages for thes commands. Try to
pick one and execute:

You will see somthing like this

$ man ls

2.1.4 MULTI-COMMAND EXECUTION

One of the important features is that one can execute multiple commands in
the shell.

To execute command 2 once command 1 has finished use

To execute command 2 as soon as command 1 forwards output to stdout use

To execute command 1 in the background use

2.1.5 KEYBOARD SHORTCUTS

These shortcuts will come in handy. Note that many overlap with emacs
short cuts.

LS(1) BSD General Commands Manual LS(1)

NAME

 ls -- list directory contents

SYNOPSIS

 ls [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwx1] [file ...]

DESCRIPTION

 For each operand that names a file of a type other than directory,

 ls displays its name as well as any requested, associated

 information. For each operand that names a file of type directory,

 ls displays the names of files contained within that directory, as

 well as any requested, associated information.

 If no operands are given, the contents of the current directory are

 displayed. If more than one operand is given, non-directory

 operands are displayed first; directory and non-directory operands

 are sorted separately and in lexicographical order.

 The following options are available:

 -@ Display extended attribute keys and sizes in long (-l) output.

 -1 (The numeric digit ``one''.) Force output to be one entry

 per line. This is the default when output is not to a terminal.

 -A List all entries except for . and ... Always set for the

 super-user.

 -a Include directory entries whose names begin with a dot (.).

 ... on purpose cut ... instead try it yourslef

command1; command2

command1; command2

command1 &

.

Keys Description

Up Arrow Show the previous command

Ctrl + z Stops the current command

Resume with fg in the foreground

Resume with bg in the background

Ctrl + c Halts the current command

Ctrl + l Clear the screen

Ctrl + a Return to the start of the line

Ctrl + e Go to the end of the line

Ctrl + k Cut everything after the cursor to a special clipboard

Ctrl + y Paste from the special clipboard

Ctrl + d Logout of current session, similar to exit

2.1.6 BASHRC, BASH_PROFILE OR ZPROFILE

Usage of a particular command and all the attributes associated with it, use
man command. Avoid using rm -r command to delete files recursively. A
good way to avoid accidental deletion is to include the following in the file
.bash_profile or .zprofile on macOS or .bashrc on other platforms:

2.1.7 MAKEFILE

Makefiles allow developers to coordinate the execution of code
compilations. This not only includes C or C++ code, but any translation
from source to a final format. For us this could include the creation of PDF
files from latex sources, creation of docker images, and the creation of
cloud services and their deployment through simple workflows represented
in makefiles, or the coordination of execution targets.

As makefiles include a simple syntax allowing structural dependencies they
can easily adapted to fulfill simple activities to be executed in repeated
fashion by developers.

An example of how to use Makefiles for docker is provided at
http://jmkhael.io/makefiles-for-your-dockerfiles/.

alias rm='rm -i'

alias mv='mv -i'

alias h='history'

http://jmkhael.io/makefiles-for-your-dockerfiles/

An example on how to use Makefiles for LaTeX is provided at
https://github.com/cloudmesh/book/blob/master/Makefile.

Makefiles include a number of rules that are defined by a target name. Let
us define a target called hello that prints out the string “Hello World”.

Important to remember is that the commands after a target are not indented
just by spaces, but actually by a single TAB character. Editors such as
emacs will be ideal to edit such Makefiles, while allowing syntax
highlighting and easy manipulation of TABs. Naturally other editors will do
that also. Please chose your editor of choice. One of the best features of
targets is that they can depend on other targets. Thus, iw we define

our makefile will first execute hello and than all commands in hallo. As you
can see this can be very useful for defining simple dependencies.

In addition we can define variables in a makefile such as

and can use them in our text with $ invocations.

Moreover, in sophisticated Makefiles, we could even make the targets
dependent on files and a target rules could be defined that only compiles
those files that have changed since our last invocation of the Makefile,
saving potentially a lot of time. However, for our work here we just use the
most elementary makefiles.

For more information we recommend you to find out about it on the
internet. A convenient reference card sis available at
http://www.cs.jhu.edu/~joanne/unixRC.pdf.

2.1.8 CHMOD

 hello:

 @echo "Hello World"

 hallo: hello

 @echo "Hallo World"

 HELLO="Hello World"

 hello:

 @echo $(HELLO)

https://github.com/cloudmesh/book/blob/master/Makefile
http://www.cs.jhu.edu/~joanne/unixRC.pdf

The chmod command stand for change mode and changes the access
permissions for a given file system object(s). It uses the following syntax:
chmod [options] mode[,mode] file1 [file2…]. The option parameters
modify how the process runs, including what information is outputted to the
shell:

Option: Description:
-f, --silent, --quiet Forces process to continue even if errors occur
-v, --verbose Outputs for every file that is processed
-c, --changes Outputs when a file is changed
--reference=RFile Uses RFile instead of Mode values
-R, --recursive Make changes to objects in subdirectories as well
--help Show help
--version Show version information

Modes specify which rights to give to which users. Potential users include
the user who owns the file, users in the file’s Group, other users not in the
file’s Group, and all, and are abbreviated as u, g, o, and a respectively. More
than one user can be specified in the same command, such as chmod –v
ug(operator)(permissions) file.txt. If no user is specified, the command
defaults to a. Next, a + or - indicates whether permissions should be added
or removed for the selected user(s). The permissions are as follows:

Permission: Description:
r Read
w Write
x Execute file or access directory
X Execute only if the object is a directory
s Set the user or group ID when running
t Restricted deletion flag or sticky mode

Permission: Description:
u Specifies the permissions the user who owns the file has
g Specifies the permissions of the group
o Specifies the permissions of users not in the group

More than one permission can be also be used in the same command as
follows:

Multiple files can also be specified:

2.1.9 EXERCISES

E.Linux.1

Familiarize yourself with the commands

E.Linux.2

Find more commands that you find useful and add them to this
page.

E.Linux.3

Use the sort command to sort all lines of a file while removing
duplicates.

E.Linux.4

Should there be other commands listed in the table with the Linux
commands If so which? Create a pull request for them.

E.Linux.5

$ chmod –v o+rw file.txt

$ chmod a-x,o+r file1.txt file2.txt

Write a section explaining chmod. Use letters not numbers

E.Linux.6

Write a section explaining chown. Use letters not numbers

E.Linux.7

Write a section explaining su and sudo

E.Linux.8

Write a section explaining cron, at, and crontab

2.2 PERL ONE LINERS ☁

Perl is a programming language that used to be very popular with system
administrators. It predates Python. It has some very powerful regular
expression abilities allowing you to easily do things on the commandline
that woul otherwise thake many hours. Here ar some useful perl one line
commands

Strip trailing whitespace from a file:

Replace wrong quote

Remove ^M from file

2.3 REFCARDS ☁

 Learning Objectives

perl -lpe 's/\s*$//' FILENAME

perl -i -p -e "s/’/'/g;" *.md

perl -p -i -e 's/\r\n$/\n/g'

https://github.com/cloudmesh-community/book/blob/master/chapters/linux/perl.md
https://github.com/cloudmesh-community/book/blob/master/chapters/linux/refcards.md

Obtain quickly information about technical aspects with the help of
reference cards.

We present you with a list of useful short reference cards. This cards can be
extremely useful to remind yourself about some important commands and
features. Having them could simplify your interaction with the systems, We
not only collected here some refcards about Linux, but also about other
useful tools and services.

If you like to add new topics, let us know via your contribution (see the
contribution section).

CheatSheets

CheatSheets

Editors

Emacs
Vi
Vim

Documentation

LaTeX
RST

Linux

Linux
Makefile
Git

Cloud/Virtualization

Openstack
Openstack

http://www.cheat-sheets.org/
https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf
http://www.ks.uiuc.edu/Training/Tutorials/Reference/virefcard.pdf
http://michaelgoerz.net/refcards/vimqrc.pdf
https://wch.github.io/latexsheet/latexsheet.pdf
https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.pdf
http://www.cs.jhu.edu/~joanne/unixRC.pdf
http://www.tofgarion.net/lectures/IN323/refcards/refcardMakeIN323.pdf
https://education.github.com/git-cheat-sheet-education.pdf
http://docs.openstack.org/user-guide/cli_cheat_sheet.html
http://cmias.free.fr/IMG/pdf/rc208_010d-openstack_2.pdf

vagrant

SQL

SQL

Languages

R

Python

Python
PythonData
Numpy/Pandas
PythonTutorial
Python
Python
PythonAPIIndex
Python3

2.4 SECURE SHELL ☁

 Learning Objectives

This is a very important sections of the book, studdy it carefully.
learn how to use SSH keys
Learn how to use ssh-add and ssh-keycahin so you only have to type in
your password once
Understand that each computer needs its own ssh key

Secure Shell is a network protocol allowing users to securely connect to
remote resources over the internet. In many services we need to use SSH to
assure that we protect he messages send between the communicating

https://www.cheatography.com/davbfr/cheat-sheets/vagrant-cheat-sheet/
http://www.digilife.be/quickreferences/QRC/MySQL-4.02a.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://dzone.com/refcardz/core-python
https://dzone.com/refcardz/data-mining-discovering-and
http://www.cheat-sheets.org/saved-copy/NumPy_SciPy_Pandas_Quandl_Cheat_Sheet.pdf
http://fivedots.coe.psu.ac.th/Software.coe/learnPython/Cheat%20Sheets/python2.pdf
http://www.cheat-sheets.org/saved-copy/PQRC-2.4-A4-latest.pdf
https://www.cheatography.com/davechild/cheat-sheets/python/pdf/
http://overapi.com/python
https://perso.limsi.fr/pointal/_media/python:cours:mementopython3-english.pdf
https://github.com/cloudmesh-community/book/blob/master/chapters/linux/ssh.md
http://openssh.com/manual.html

entities. Secure Shell is based on public key technology requiring to
generate a public-private key pair on the computer. The public key will than
be uploaded to the remote machine and when a connection is established
during authentication the public private key pair is tested. If they match
authentication is granted. As many users may have to share a computer it is
possible to add a list of public keys so that a number of computers can
connect to a server that hosts such a list. This mechanism builds the basis
for networked computers.

In this section we will introduce you to some of the commands to utilize
secure shell. We will reuse this technology in other sections to for example
create a network of workstations to which we can log in from your laptop.
For more information please also consult with the SSH Manual.

 Whatever others tell you, the private key should never be
copied to another machine. You almost always want to have a
passphrase protecting your key.

2.4.1 SSH-KEYGEN

The first thing you will need to do is to create a public private key pair.
Before you do this check whether there are already keys on the computer
you are using:

If there are files named id_rsa.pub or id_dsa.pub, then the keys are set up
already, and we can skip the generating keys step. However you must know
the passphrase of the key. If you forgot it you will need to recreate the key.
However you will lose any ability to connect with the old key to the
resources to which you uploaded the public key. So be careful.

To generate a key pair use the command ssh-keygen. This program is
commonly available on most UNIX systems and most recently even

ls ~/.ssh

http://openssh.com/manual.html
http://linux.die.net/man/1/ssh-keygen

Windows 10.

To generate the key, please type:

The comment will remind you where the key has been created, you could
for example use the hostname on which you created the key.

In the following text we will use localname to indicate the username on
your computer on which you execute the command.

The command requires the interaction of the user. The first question is:

We recommend using the default location ~/.ssh/ and the default name
id_rsa. To do so, just press the enter key.

The second and third question is to protect your ssh key with a passphrase.
This passphrase will protect your key because you need to type it when you
want to use it. Thus, you can either type a passphrase or press enter to leave
it without passphrase. To avoid security problems, you MUST chose a
passphrase.

It will ask you for the location and name of the new key. It will also ask you
for a passphrase, which you MUST provide. Please use a strong passphrase
to protect it appropriately. Some may advise you (including teachers and
TA’s) to not use passphrases. This is WRONG as it allows someone that
gains access to your computer to also gain access to all resources that have
the public key. Only for some system related services you may create
passwordless keys, but such systems need to be properly protected.

 Not using passphrases poses a security risk!

Make sure to not just type return for an empty passphrase:

$ ssh-keygen -t rsa -C <comment>

Enter file in which to save the key (/home/localname/.ssh/id_rsa):

and:

If executed correctly, you will see some output similar to:

Once, you have generated your key, you should have them in the .ssh
directory. You can check it by:

If everything is normal, you will see something like:

The directory ~/.ssh will also contain the private key id_rsa which you
must not share or copy to another computer.

 Never, copy your private key to another machine or check it
into a repository!

To see what is in the .ssh directory, please use

Typically you will se a list of files such as

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Generating public/private rsa key pair.

Enter file in which to save the key (/home/localname/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/localname/.ssh/id_rsa.

Your public key has been saved in /home/localname/.ssh/id_rsa.pub.

The key fingerprint is:

34:87:67:ea:c2:49:ee:c2:81:d2:10:84:b1:3e:05:59 localname@indiana.edu

+--[RSA 2048]----+

|.+...Eo= . |

| ..=.o + o +o |

|O. = |

| = . . . |

+-----------------+

$ cat ~/.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCXJH2iG2FMHqC6T/U7uB8kt

6KlRh4kUOjgw9sc4Uu+Uwe/kshuispauhfsjhfm,anf6787sjgdkjsgl+EwD0

thkoamyi0VvhTVZhj61pTdhyl1t8hlkoL19JVnVBPP5kIN3wVyNAJjYBrAUNW

4dXKXtmfkXp98T3OW4mxAtTH434MaT+QcPTcxims/hwsUeDAVKZY7UgZhEbiE

xxkejtnRBHTipi0W03W05TOUGRW7EuKf/4ftNVPilCO4DpfY44NFG1xPwHeim

Uk+t9h48pBQj16FrUCp0rS02Pj+4/9dNeS1kmNJu5ZYS8HVRhvuoTXuAY/UVc

ynEPUegkp+qYnR user@myemail.edu

$ ls ~/.ssh

In case you need to change your change passphrase, you can simply run
ssh-keygen -p command. Then specify the location of your current key, and
input (old and) new passphrases. There is no need to re-generate keys:

You will see the following output once you have completed that step:

2.4.2 SSH-ADD

Often you wil find wrong information about passphrases on the internet and
people recommending you not to use one. However it is in almost all cases
better to create a key pair and use ssh-add to add the key to the current
session so it can be used in behalf of you. This is accomplished with an
agent.

The ssh-add command adds SSH private keys into the SSH authentication
agent for implementing single sign-on with SSH. ssh-add allows the user to
use any number of servers that are spread across any number of
organizations, without having to type in a password every time when
connecting between servers. This is commonly used by system
administrators to login to multiple server.

ssh-add can be run without arguments. When run without arguments, it
adds the following default files if they do exist:

~/.ssh/identity - Contains the protocol version 1 RSA authentication
identity of the user.
~/.ssh/id_rsa - Contains the protocol version 1 RSA authentication
identity of the user.

authorized_keys

id_rsa

id_rsa.pub

known_hosts

ssh-keygen -p

Enter file in which the key is (/home/localname/.ssh/id_rsa):

Enter old passphrase:

Key has comment '/home/localname/.ssh/id_rsa'

Enter new passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved with the new passphrase.

~/.ssh/id_dsa - Contains the protocol version 2 DSA authentication
identity of the user.
~/.ssh/id_ecdsa - Contains the protocol version 2 ECDSA
authentication identity of the user.

To add a key you can provide the path of the key file as an argument to ssh-
add. For example,

would add the file ~/.ssh/id_rsa

If the key being added has a passphrase, ssh-add will run the ssh-askpass
program to obtain the passphrase from the user. If the SSH_ASKPASS

environment variable is set, the program given by that environment variable
is used instead.

Some people use the SSH_ASKPASS environment variable in scripts to provide
a passphrase for a key. The passphrase might then be hard-coded into the
script, or the script might fetch it from a password vault.

The command line options of ssh-add are as follows:

Option Description

-c

Causes a confirmation to be requested from the user every
time the added identities are used for authentication. The
confirmation is requested using ssh-askpass.

-D Deletes all identities from the agent.

-d

Deletes the given identities from the agent. The private
key files for the identities to be deleted should be listed on
the command line.

-e pkcs11 Remove key provided by pkcs11

-L

Lists public key parameters of all identities currently
represented by the agent.

ssh-add ~/.ssh/id_rsa

Option Description

-l

Lists fingerprints of all identities currently represented by
the agent.

-s pkcs11 Add key provided by pkcs11.

-t life

Sets the maximum time the agent will keep the given key.
After the timeout expires, the key will be automatically
removed from the agent. The default value is in seconds,
but can be suffixed for m for minutes, h for hours, d for
days, or w for weeks.

-X Unlocks the agent. This asks for a password to unlock.

-x

Locks the agent. This asks for a password; the password
is required for unlocking the agent. When the agent is
locked, it cannot be used for authentication.

2.4.3 SSH ADD AND AGENT

To not always type in your password, you can use ssh-add as previously
discussed

It prompts the user for a private key passphrase and add it to a list of keys
managed by the ssh-agent. Once it is in this list, you will not be asked for
the passphrase as long as the agent is running.with your public key. To use
the key across terminal shells you can start an ssh agent.

To start the agent please use the following command:

or use

It is important that you use the backquote, located under the tilde (US
keyboard), rather than the single quote. Once the agent is started it will print
a PID that you can use to interact with later

$ eval `ssh-agent`

$ eval "$(ssh-agent -s)"

To add the key use the command

To remove the agent use the command

To execute the command upon logout, place it in your .bash_logout
(assuming you use bash).

On OSX you can also add the key permanently to the keychain if you do toe
following:

Modify the file .ssh/config and add the following lines:

2.4.3.1 Using SSH on Mac OS X

Mac OS X comes with an ssh client. In order to use it you need to open the
Terminal.app application. Go to Finder, then click Go in the menu bar at the
top of the screen. Now click Utilities and then open the Terminal
application.

2.4.3.2 Using SSH on Linux

All Linux versions come with ssh and can be used right from the terminal.

2.4.3.3 Using SSH on Raspberry Pi 3/4

SSH is available on Raspbian. However, to ssh into the PI you have to
activate it via the configuration menu.

2.4.3.4 Accessing a Remote Machine

$ ssh-add

kill $SSH_AGENT_PID

ssh-add -K ~/.ssh/id_rsa

Host *

 UseKeychain yes

 AddKeysToAgent yes

 IdentityFile ~/.ssh/id_rsa

Once the key pair is generated, you can use it to access a remote machine.
To dod so the public key needs to be added to the authorized_keys file on
the remote machine.

The easiest way to do tis is to use the command ssh-copy-id.

Note that the first time you will have to authenticate with your password.

Alternatively, if the ssh-copy-id is not available on your system, you can
copy the file manually over SSH:

Now try:

and you will not be prompted for a password. However, if you set a
passphrase when creating your SSH key, you will be asked to enter the
passphrase at that time (and whenever else you log in in the future). To
avoid typing in the password all the time we use the ssh-add command that
we described earlier.

2.4.4 SSH PORT FORWARDING 🅾

🅾 TODO: Add images to illustrate the concepts

SSH Port forwarding (SSH tunneling) creates an encrypted secure
connection between a local computer and a remote computer through which
services can be relayed. Because the connection is encrypted, SSH
tunneling is useful for transmitting information that uses an unencrypted
protocol.

2.4.4.1 Prerequisites

$ ssh-copy-id user@host

$ cat ~/.ssh/id_rsa.pub | ssh user@host 'cat >> .ssh/authorized_keys'

$ ssh user@host

$ ssh-add

Before you begin, you need to check if forwarding is allowed on the
SSH server you will connect to.
You also need to have a SSH client on the computer you are working
on.

If you are using the OpenSSH server:

and look and change the following:

Set the GatewaysPorts variable only if you are going to use remote port
forwarding (discussed later in this tutorial). Then, you need to restart the
server for the change to take effect.

2.4.4.2 How to Restart the Server

If you are on:

Linux, depending upon the init system used by your distribution, run:

Note that depending on your distribution, you may have to change the
service to ssh instead of sshd.

Mac, you can restart the server using:

Windows and want to set up a SSH server, have a look at MSYS2 or
Cygwin.

2.4.4.3 Types of Port Forwarding

There are three types of SSH Port forwarding:

$ vi /etc/ssh/sshd_config

AllowTcpForwarding = Yes

GatewayPorts = Yes

$ sudo systemctl restart sshd

$ sudo service sshd restart

$ sudo launchctl unload /System/Library/LaunchDaemons/ssh.plist

$ sudo launchctl load -w /System/Library/LaunchDaemons/ssh.plist

2.4.4.4 Local Port Forwarding

Local port forwarding lets you connect from your local computer to another
server. It allows you to forward traffic on a port of your local computer to
the SSH server, which is forwarded to a destination server. To use local port
forwarding, you need to know your destination server, and two port
numbers.

Example 1:

Where <host> should be replaced by the name of your laptop. The -L option
specifies local port forwarding. For the duration of the SSH session,
pointing your browser at http://localhost:8080/ would send you to
http://cloudcomputing.com

Example 2:

This example opens a connection to the www.cloudcomputing.com jump
server, and forwards any connection to port 80 on the local machine to port
80 on intra.example.com.

Example 3:

By default, anyone (even on different machines) can connect to the
specified port on the SSH client machine. However, this can be restricted to
programs on the same host by supplying a bind address:

Example 4:

This would forward two connections, one to www.cloudcomputing.com, the
other to www.cloud.com. Pointing your browser at http://localhost:8080/

$ ssh -L 8080:www.cloudcomputing.org:80 <host>

$ ssh -L 80:intra.example.com:80 www.cloudcomputing.com

$ ssh -L 127.0.0.1:80:intra.example.com:80 www.cloudcomputing.com

$ ssh -L 8080:www.Cloudcomputing.com:80 -L 12345:cloud.com:80 <host>

would download pages from www.cloudcomputing.com, and pointing your
browser to http://localhost:12345/ would download pages from
www.cloud.com.

Example 5:

The destination server can even be the same as the SSH server.

The LocalForward option in the OpenSSH client configuration file can be
used to configure forwarding without having to specify it on command line.

2.4.4.5 Remote Port Forwarding

Remote port forwarding is the exact opposite of local port forwarding. It
forwards traffic coming to a port on your server to your local computer, and
then it is sent to a destination. The first argument should be the remote port
where traffic will be directed on the remote system. The second argument
should be the address and port to point the traffic to when it arrives on the
local system.

SSH does not by default allow remote hosts to forwarded ports. To enable
remote forwarding add the following to: /etc/ssh/sshd_config

and restart SSH

After completing the previous steps you should be able to connect to the
server remotely, even from your local machine. ssh -R first creates an SSH
tunnel that forwards traffic from the server on port 9000 to your local
machine on port 3000.

$ ssh -L 5900:localhost:5900 <host>

$ ssh -R 9000:localhost:3000 user@clodcomputing.com

GatewayPorts yes

$ sudo vim /etc/ssh/sshd_config

$ sudo service ssh restart

2.4.4.6 Dynamic Port Forwarding

Dynamic port forwarding turns your SSH client into a SOCKS proxy
server. SOCKS is a little-known but widely-implemented protocol for
programs to request any Internet connection through a proxy server. Each
program that uses the proxy server needs to be configured specifically, and
reconfigured when you stop using the proxy server.

The SSH client creates a SOCKS proxy at port 5000 on your local
computer. Any traffic sent to this port is sent to its destination through the
SSH server.

Next, you’ll need to configure your applications to use this server. The
Settings section of most web browsers allow you to use a SOCKS proxy.

2.4.4.7 ssh config

Defaults and other configurations can be added to a configuration file that is
placed in the system. The ssh program on a host receives its configuration
from

the command line options
a user-specific configuration file: ~/.ssh/config
a system-wide configuration file: /etc/ssh/ssh_config

Next we provide an example on how to use a config file

2.4.4.8 Tips

Use SSH keys

You will need to use ssh keys to access remote machines

No blank passphrases

$ ssh -D 5000 user@clodcomputing.com

In most cases you must use a passphrase with your key. In fact if we
find that you use passwordless keys to futuresystems and to chameleon
cloud resources, we may elect to give you anF for the assignment in
question. There are some exceptions, but they will be clearly
communicated to you in class. You will as part of your cloud drivers
license test explain how you gain access to futuresystems and
chameleon to explicitly explain this point and provide us with reasons
what you can not do.

A key for each server

Under no circumstances copy the same private key on multiple servers.
This violates security best practices. Create for each server a new
private key and use their public keys to gain access to the appropriate
server.

Use SSH agent

So as to not to type in all the time the passphrase for a key, we
recommend using ssh-agent to manage the login. This will be part of
your cloud drivers license.

But shut down the ssh-agent if not in use

keep an offline backup, put encrypt the drive

You may for some of our projects need to make backups of private
keys on other servers you set up. If you like to make a backup you can
do so on a USB stick, but make sure that access to the stick is
encrypted. Do not store anything else on that key and look it in a safe
place. If you lose the stick, recreate all keys on all machines.

2.4.4.9 References

The Secure Shell: The Definitive Guide, 2 Ed (O’Reilly and
Associates)

http://shop.oreilly.com/product/9780596008956.do

2.5 SSH AND BASH ON WINDOWS ☁

For this class we recommend that you use a virtual machine via virtual box
and use the Linux ssh instructions. The information here is just provided for
completeness and no support will be offered for native windows support.

Windows users need to have some special software to be able to use the
SSH commands. If you have one that you are comfortable with and know
how to setup key pairs and access the contents of your public key, please
feel free to use it.

On Windows you have a couple of options on running Linux commands
such as ssh. At this time it may be worth while to try the OpenSSH Client
available for Windows, although it is in beta. If you like to use other
methods we have included alternatives.

2.5.1 OPENSSH CLIENT ON WINDOWS

software to be able to run it directly from the Windows commandline
including PowerShell.

However it is as far as we know not activated by default so you need to
follow some setup scripts. Also this software is considered beta and its
development and issues can be found at

https://github.com/PowerShell/openssh-portable

Fortunately, the software is already distributed with Winodws 10, but may
not yet been activated. What you have to do is to install it by going to
Settings > Apps and click Manage optional features under Apps &

features.

Next, Click on the Add feature. You will be presented with a list in which
you scroll down, till you find OpenSSH Client (Beta). Click on it and
invoke Install.

https://github.com/cloudmesh-community/book/blob/master/chapters/linux/ssh-windows.md
https://github.com/PowerShell/openssh-portable

After the install has completed, you can use the ssh command. Just type it
in the commandshell or PowerShell

Naturally you can now use it just as on Linux or macOS. and use it to login
to other resources

see also the MS SSH Guide for the newest up dates.

Due to the availability of SSH on Windows 10, we no longer recommend
using Cygwin SSH, PuTTY or Chocolatey. However we kept thise sections
here for completness.

2.5.2 GITBASH

A realy great tool for Windows is made avalable via

https://gitforwindows.org/

Here you can find gitbash that provides you with a terminal in which you
can natively execute linux commands such as cd, ls and many more. It also
includes ssh and ssh-keygen. which you will need if you want o interface
with Linux machines hosted in a cloud.

You can also enable the Git GUI as you may be used to doing things form
GUI’s. However soon you will find out why in this class we typicaly do not
much via GUIs. However if you like them you can also integrate git in the
Windows Explorer. This could be beneficial fo you during development of
your project or keep up with what others do on git.

2.5.2.1 Makefiles on Windows

Makefiles can easily be accessed also on windows while installing gitbash.
Please reed to the internet or search in this handbook for more information
about gitbash.

PS C:\Users\gregor> ssh

PS C:\Users\gregor> ssh myname@computer.example.com

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://gitforwindows.org/

🅾 Please contribute to this section on how to install make on wondows
natively. Here is some information to start with Make on Windows

2.5.3 USING SSH FROM CYGWIN

One established way of using ssh is from using cygwin.

http://cygwin.com/install.html Cygwin contains a collection of GNU and
Open Source tools providing Linux like functionality on Windows. A DLL
is available that exposes the POSIX API functionality.

A list of supported commands is available at

https://cygwin.com/packages/package_list.html Please be minded that in
order for cygwin to function easily the Windows user name should not
include spaces. However, as the setup in windows encourages to use the full
name when you buy and setup a machine it may not be convenient to use.
However, we just recommend that you create yourself a new username and
use this if you like to use cygwin.

You can selectively install from the cygwin setup terminal which software
you like to use, obviously you may want to use ssh

2.5.4 SSH FROM PUTTY

As you will see the process is somewhat cumbersome and when you
compare it with the commandline tools available, we do recommend using
them instead.

PuTTY allows you to access the SSH, Telnet and Rlogin network protocols
from windows.

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html Although
PuTTY has been out there for many years and served the community well,
it is not following the standard ssh command line syntax when invoked
from a command shell.

https://stackoverflow.com/questions/32127524/how-to-install-and-use-make-in-windows
http://cygwin.com/install.html
https://cygwin.com/packages/package_list.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

In addition to using ssh, it also provides a copy command.

Putty is best known for its GUI configuration application to manage several
machines as demonstrated next. Once you have downloaded it and opened
PuTTYgen, you will be presented with a a key generator window (images
provided by chameleon cloud) (see Figure [F:putty-key]).

{0.5} {images/chameleon/putty2.png} {Key generation window} {F:putty-
key}

To generate a key you click the Generate button which is blue. The PuTTY
Key Generator (see Figure [F:putty-pass]) will then ask you to move your
mouse around the program’s blank space to generate “randomness” for your
key. You must enter a “Key passphrase” and then confirm the passphrase.

{0.5} {images/chameleon/putty3.png} {Key generation window} {F:putty-
pass}

Next you need to save both the public and private keys into a file of your
choice using the “Save public key” and “Save private key” buttons. We
suggest you name something obvious like “public_key.pub” and
“private_key” so that you can distinguish between the two.

Before closing this window, select the entire public key and copy it with
“Control-C”. Please note that everything should be copied, including “ssh-
rsa”. This will be used when importing the key pair to Openstack.

At this time, the public key has been created and copied. Now you can use
the public key and upload it to systems you like to login to.

2.5.5 CHOCOLATEY

Another approach is to use it in Powershell with the help of chocolatey.
Other options may be better suited for you and we leave it up to you to

putty -ssh user@host.name

pscp user@host.name:"\"remote filename with spaces\"" local_filename

make this decision.

Chocolatey is a software management tool that mimics the install
experience that you have on Linux and macOS. It has a repository with
many packages. The packages are maintained by the community and you
need to evaluate security implications when installing packages hosted on
chocolatey just as you have to do if you install software on Linux and
macOS from their repositories. Please be aware that there could be
malicious code offered in the chocolatey repository although the
distributors try to remove them.

The installation is sufficiently explained at

https://chocolatey.org/install Once installed you have a command choco and
you should make sure you have the newest version with:

Now you can browse packages at

https://chocolatey.org/packages Search for openssh and see the results. You
may find different versions. Select the one that most suits you and satisfies
your security requirements as well as your architecture. Lets assume you
chose the Microsoft port, than you can install it with:

Naturally, you can also install cygwin and ptty over chocolatey. A list of
packages can be found at

https://chocolatey.org/packages Packages of interest include

emacs: choco install emacs
pandoc: choco install pandoc
LaTeX: choco install miktex
jabref: choco install jabref
pycharm: choco install pycharm-community
lyx: choco install lyx

choco upgrade chocolatey

choco install openssh

https://chocolatey.org/install
https://chocolatey.org/packages
https://chocolatey.org/packages

python 2: choco install python2
python 3: choco install python
pip: choco install pip
virtualbox: choco install virtualbox
vagrant: choco install vagrant

Before installing any of them evaluate if you need them and identify
security risks.

2.6 SSH AND BASH ON WINDOWS ☁

For this class we recommend that you use a virtual machine via virtual box
and use the Linux ssh instructions. The information here is just provided for
completeness and no support will be offered for native windows support.

Windows users need to have some special software to be able to use the
SSH commands. If you have one that you are comfortable with and know
how to setup key pairs and access the contents of your public key, please
feel free to use it.

On Windows you have a couple of options on running Linux commands
such as ssh. At this time it may be worth while to try the OpenSSH Client
available for Windows, although it is in beta. If you like to use other
methods we have included alternatives.

2.6.1 OPENSSH CLIENT ON WINDOWS

software to be able to run it directly from the Windows commandline
including PowerShell.

However it is as far as we know not activated by default so you need to
follow some setup scripts. Also this software is considered beta and its
development and issues can be found at

https://github.com/PowerShell/openssh-portable

https://github.com/cloudmesh-community/book/blob/master/chapters/linux/ssh-windows.md
https://github.com/PowerShell/openssh-portable

Fortunately, the software is already distributed with Winodws 10, but may
not yet been activated. What you have to do is to install it by going to
Settings > Apps and click Manage optional features under Apps &

features.

Next, Click on the Add feature. You will be presented with a list in which
you scroll down, till you find OpenSSH Client (Beta). Click on it and
invoke Install.

After the install has completed, you can use the ssh command. Just type it
in the commandshell or PowerShell

Naturally you can now use it just as on Linux or macOS. and use it to login
to other resources

see also the MS SSH Guide for the newest up dates.

Due to the availability of SSH on Windows 10, we no longer recommend
using Cygwin SSH, PuTTY or Chocolatey. However we kept thise sections
here for completness.

2.6.2 GITBASH

A realy great tool for Windows is made avalable via

https://gitforwindows.org/

Here you can find gitbash that provides you with a terminal in which you
can natively execute linux commands such as cd, ls and many more. It also
includes ssh and ssh-keygen. which you will need if you want o interface
with Linux machines hosted in a cloud.

You can also enable the Git GUI as you may be used to doing things form
GUI’s. However soon you will find out why in this class we typicaly do not

PS C:\Users\gregor> ssh

PS C:\Users\gregor> ssh myname@computer.example.com

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://gitforwindows.org/

much via GUIs. However if you like them you can also integrate git in the
Windows Explorer. This could be beneficial fo you during development of
your project or keep up with what others do on git.

2.6.2.1 Makefiles on Windows

Makefiles can easily be accessed also on windows while installing gitbash.
Please reed to the internet or search in this handbook for more information
about gitbash.

🅾 Please contribute to this section on how to install make on wondows
natively. Here is some information to start with Make on Windows

2.6.3 USING SSH FROM CYGWIN

One established way of using ssh is from using cygwin.

http://cygwin.com/install.html Cygwin contains a collection of GNU and
Open Source tools providing Linux like functionality on Windows. A DLL
is available that exposes the POSIX API functionality.

A list of supported commands is available at

https://cygwin.com/packages/package_list.html Please be minded that in
order for cygwin to function easily the Windows user name should not
include spaces. However, as the setup in windows encourages to use the full
name when you buy and setup a machine it may not be convenient to use.
However, we just recommend that you create yourself a new username and
use this if you like to use cygwin.

You can selectively install from the cygwin setup terminal which software
you like to use, obviously you may want to use ssh

2.6.4 SSH FROM PUTTY

https://stackoverflow.com/questions/32127524/how-to-install-and-use-make-in-windows
http://cygwin.com/install.html
https://cygwin.com/packages/package_list.html

As you will see the process is somewhat cumbersome and when you
compare it with the commandline tools available, we do recommend using
them instead.

PuTTY allows you to access the SSH, Telnet and Rlogin network protocols
from windows.

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html Although
PuTTY has been out there for many years and served the community well,
it is not following the standard ssh command line syntax when invoked
from a command shell.

In addition to using ssh, it also provides a copy command.

Putty is best known for its GUI configuration application to manage several
machines as demonstrated next. Once you have downloaded it and opened
PuTTYgen, you will be presented with a a key generator window (images
provided by chameleon cloud) (see Figure [F:putty-key]).

{0.5} {images/chameleon/putty2.png} {Key generation window} {F:putty-
key}

To generate a key you click the Generate button which is blue. The PuTTY
Key Generator (see Figure [F:putty-pass]) will then ask you to move your
mouse around the program’s blank space to generate “randomness” for your
key. You must enter a “Key passphrase” and then confirm the passphrase.

{0.5} {images/chameleon/putty3.png} {Key generation window} {F:putty-
pass}

Next you need to save both the public and private keys into a file of your
choice using the “Save public key” and “Save private key” buttons. We
suggest you name something obvious like “public_key.pub” and
“private_key” so that you can distinguish between the two.

putty -ssh user@host.name

pscp user@host.name:"\"remote filename with spaces\"" local_filename

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Before closing this window, select the entire public key and copy it with
“Control-C”. Please note that everything should be copied, including “ssh-
rsa”. This will be used when importing the key pair to Openstack.

At this time, the public key has been created and copied. Now you can use
the public key and upload it to systems you like to login to.

2.6.5 CHOCOLATEY

Another approach is to use it in Powershell with the help of chocolatey.
Other options may be better suited for you and we leave it up to you to
make this decision.

Chocolatey is a software management tool that mimics the install
experience that you have on Linux and macOS. It has a repository with
many packages. The packages are maintained by the community and you
need to evaluate security implications when installing packages hosted on
chocolatey just as you have to do if you install software on Linux and
macOS from their repositories. Please be aware that there could be
malicious code offered in the chocolatey repository although the
distributors try to remove them.

The installation is sufficiently explained at

https://chocolatey.org/install Once installed you have a command choco and
you should make sure you have the newest version with:

Now you can browse packages at

https://chocolatey.org/packages Search for openssh and see the results. You
may find different versions. Select the one that most suits you and satisfies
your security requirements as well as your architecture. Lets assume you
chose the Microsoft port, than you can install it with:

choco upgrade chocolatey

choco install openssh

https://chocolatey.org/install
https://chocolatey.org/packages

Naturally, you can also install cygwin and ptty over chocolatey. A list of
packages can be found at

https://chocolatey.org/packages Packages of interest include

emacs: choco install emacs
pandoc: choco install pandoc
LaTeX: choco install miktex
jabref: choco install jabref
pycharm: choco install pycharm-community
lyx: choco install lyx
python 2: choco install python2
python 3: choco install python
pip: choco install pip
virtualbox: choco install virtualbox
vagrant: choco install vagrant

Before installing any of them evaluate if you need them and identify
security risks.

2.7 ZSH ☁

Z shell (zsh) is an alternative to bash. It is used as an interactive shell or
command interpreter. Zsh has been chosen by apple as a replacement for
bash. A large number of plugins for zsh is avalable at the Web site Oh My
Zsh.

Features of zsh include:

commandline completion
global history that can be shared in shells
build in file globing
multiline commands
spell correction
compatibillity modes to impersonate other shells
themes for prompts

https://chocolatey.org/packages
https://github.com/cloudmesh-community/book/blob/master/chapters/linux/zsh.md
https://ohmyz.sh/

in addition to which a wher ecommand
shortcut to names directories with ~

In principal it does not matter much whcih shell you use as long as you use
to set up your envireonment properly. While bash zupporst .bash_profile
and .bashrc, zsh supports ~/.zprofile and ~/.zshrc

A good overview of the loading process is documented at

https://medium.com/@rajsek/zsh-bash-startup-files-loading-order-
bashrc-zshrc-etc-e30045652f2e

Setting up zsh on an older OSX is relatively simple.

To add Oh My Zsh you can do:

To chnge the default shell to zsh you can than execute

To activate the shell you can as usal do

However if you start a new terminal, you do not have to do this as it is
added automatically.

To use a number of useful plugins, you can activate them with

If you like to change the theme you can find a large number at

https://github.com/ohmyzsh/ohmyzsh/wiki/Themes

2.7.1 OTHER OPERATING SYSTEMS

$ brew install zsh

$ sh -c "$(curl -fsSL https://raw.githubusercontent.com/robbyrussell/oh-my-zsh/master/tools/install.sh)"

$ chsh -s $(which zsh)

$ source ~/.zshrc

$ plugins=(osx git colored-man colorize pip python brew zsh-syntax-highlighting zsh-autosuggestions)

https://medium.com/@rajsek/zsh-bash-startup-files-loading-order-bashrc-zshrc-etc-e30045652f2e
https://github.com/ohmyzsh/ohmyzsh/wiki/Themes

For other operationg systems see

https://github.com/ohmyzsh/ohmyzsh/wiki/Installing-ZSH

2.7.2 ZSH ON WINDOWS 10

To install zsh on Windows 10, please look at

https://www.howtogeek.com/258518/how-to-use-zsh-or-another-shell-
in-windows-10/

2.7.3 EXERCISES ☁

E.SSH.1:

Create an SSH key pair

E.SSH.2:

Upload the public key to git repository you use.

E.SSH.3:

What is the output of a key that has a passphrase when executing
the following command. Test it out on your key

E.SSH.4

Get an account on futuresystems.org (if you are authorized to do
so). Upload your key to https://futuresystems.org. Login to
india.futuresystems.org. Note that this could take some time as
administrators need to approve you. Be patient.

E.SSH.5:

$ grep ENCRYPTED ~/.ssh/id_rsa

https://github.com/ohmyzsh/ohmyzsh/wiki/Installing-ZSH
https://www.howtogeek.com/258518/how-to-use-zsh-or-another-shell-in-windows-10/
https://github.com/cloudmesh-community/book/blob/master/chapters/linux/ssh-excerise.md
https://futuresystems.org/

What can happen if you copy your private key to a machine on
the network?

E.SSH.6:

Should I share my provate key with others?

E.SSH.7:

Assume I participate in a video conference call and I accidently
share my private key. What should I do?

E.SSH.8:

Assume I participate in a video conference call and I accidently
share my public key. What should I do?

3 REFERENCES

☁

https://github.com/cloudmesh-community/book/blob/master/chapters/empty.md

	1 PREFACE
	1.1 Disclaimer ☁️
	1.1.1 Acknowledgment
	1.1.2 Extensions

	2 INTRODUCTION
	2.1 Linux Shell ☁️
	2.1.1 History
	2.1.2 Shell
	2.1.3 The command man
	2.1.4 Multi-command execution
	2.1.5 Keyboard Shortcuts
	2.1.6 bashrc, bash_profile or zprofile
	2.1.7 Makefile
	2.1.8 chmod
	2.1.9 Exercises

	2.2 Perl One liners ☁️
	2.3 Refcards ☁️
	2.4 Secure Shell ☁️
	2.4.1 ssh-keygen
	2.4.2 ssh-add
	2.4.3 SSH Add and Agent
	2.4.3.1 Using SSH on Mac OS X
	2.4.3.2 Using SSH on Linux
	2.4.3.3 Using SSH on Raspberry Pi 3/4
	2.4.3.4 Accessing a Remote Machine

	2.4.4 SSH Port Forwarding 🅾️
	2.4.4.1 Prerequisites
	2.4.4.2 How to Restart the Server
	2.4.4.3 Types of Port Forwarding
	2.4.4.4 Local Port Forwarding
	2.4.4.5 Remote Port Forwarding
	2.4.4.6 Dynamic Port Forwarding
	2.4.4.7 ssh config
	2.4.4.8 Tips
	2.4.4.9 References

	2.5 SSH and Bash on Windows ☁️
	2.5.1 OpenSSH Client on Windows
	2.5.2 GitBash
	2.5.2.1 Makefiles on Windows

	2.5.3 Using SSH from Cygwin
	2.5.4 SSH from putty
	2.5.5 Chocolatey

	2.6 SSH and Bash on Windows ☁️
	2.6.1 OpenSSH Client on Windows
	2.6.2 GitBash
	2.6.2.1 Makefiles on Windows

	2.6.3 Using SSH from Cygwin
	2.6.4 SSH from putty
	2.6.5 Chocolatey

	2.7 ZSH ☁️
	2.7.1 Other operating systems
	2.7.2 zsh on Windows 10
	2.7.3 Exercises ☁️

	3 REFERENCES

