

[image: cover image]

 FA19 Proceedings Cloud Computing Engineering

 Gregor von Laszewski

 (c) Gregor von Laszewski, 2018, 2019

FA19 Proceedings Cloud Computing Engineering
	1 PREFACE	1.1 Disclaimer ☁️	1.1.1 Acknowledgment
	1.1.2 Extensions

	2 REPORTS	2.1 COMPUTE	2.1.1 ORACLE	2.1.1.1 Oracle Compute and Storage Service ☁️	2.1.1.1.1 Abstract	2.1.1.1.1.1 Introduction
	2.1.1.1.1.2 Advantages
	2.1.1.1.1.3 Current Trends
	2.1.1.1.1.4 Cloudmesh Compute
	2.1.1.1.1.5 Cloudmesh Storage
	2.1.1.1.1.6 Lessons Learnt

	2.1.1.1.2 Acknowledgements
	2.1.1.1.3 References

	2.1.1.2 Oracle Cloud Account ☁️	2.1.1.2.1 Account Creation
	2.1.1.2.2 Account Login
	2.1.1.2.3 Oracle API
	2.1.1.2.4 Cloudmesh Config File	2.1.1.2.4.1 Compute Entry
	2.1.1.2.4.2 Storage Entry

	2.1.1.2.5 Required Keys and OCIDs	2.1.1.2.5.1 Create API Signing Key
	2.1.1.2.5.2 User
	2.1.1.2.5.3 Tenancy
	2.1.1.2.5.4 Compartment
	2.1.1.2.5.5 Public Key

	2.1.1.2.6 Compute Service
	2.1.1.2.7 Storage Service
	2.1.1.2.8 References
	2.1.1.2.9 MNIST Deep Learning Example ☁️

	2.1.2 Cloudmesh Compute Project for Google Cloud Platform (GCP) ☁️	2.1.2.1 Abstract
	2.1.2.2 Architecture
	2.1.2.3 APIs	2.1.2.3.1 VM
	2.1.2.3.2 Flavors
	2.1.2.3.3 image
	2.1.2.3.4 keys
	2.1.2.3.5 Security groups

	2.1.2.4 Technologies
	2.1.2.5 Progress	2.1.2.5.1 Week of 22nd Sep
	2.1.2.5.2 Week of 7th Oct
	2.1.2.5.3 Week of 14th Oct
	2.1.2.5.4 Week of 21st Oct

	2.1.2.6 Work Breakdown Structure
	2.1.2.7 Results
	2.1.2.8 Benchmark
	2.1.2.9 Testing
	2.1.2.10 References

	2.1.3 Benchmark Compute Providers ☁️	2.1.3.1 Goal	2.1.3.1.1 Result

	2.1.3.2 Insights
	2.1.3.3 Discoveries	2.1.3.3.1 How to Use This Custom Benchmark Script

	2.1.3.4 Progress	2.1.3.4.1 Week 8 October 14
	2.1.3.4.2 Week 9 October 21
	2.1.3.4.3 Week 10 October 28
	2.1.3.4.4 Week 11 November 4
	2.1.3.4.5 Week 12 November 11
	2.1.3.4.6 Week 13 November 18
	2.1.3.4.7 Week 15 December 2
	2.1.3.4.8 Week 16 December 8

	2.1.3.5 Reference

	2.2 STORAGE	2.2.1 GOOGLE	2.2.1.1 Cloudmesh Data Transfer Between Local, Azure and Google Google cloud Storage Service (Cloudmesh Data Transfer Service) ☁️	2.2.1.1.1 Abstract
	2.2.1.1.2 Objective
	2.2.1.1.3 Motivation
	2.2.1.1.4 Architecture
	2.2.1.1.5 Technology
	2.2.1.1.6 Usage
	2.2.1.1.7 Benchmarks
	2.2.1.1.8 Testing
	2.2.1.1.9 References

	2.2.2 Cloudmesh Storage Provider for Virtual Directories between AWS and Google ☁️	2.2.2.1 Introduction
	2.2.2.2 Motivation
	2.2.2.3 Architecture Diagram
	2.2.2.4 Technology Used
	2.2.2.5 Implementation Plan
	2.2.2.6 Dependencies / Constraints
	2.2.2.7 Testing
	2.2.2.8 Benchmarks
	2.2.2.9 References

	2.2.3 Cloudmesh File Transfer Service for AWS S3 and Azure Blob ☁️	2.2.3.1 Objective
	2.2.3.2 Motivation
	2.2.3.3 Architecture
	2.2.3.4 Technology
	2.2.3.5 Usage	2.2.3.5.1 cms storage copy command
	2.2.3.5.2 cms transfer command (Deprecated - moved to storage copy)

	2.2.3.6 Benchmarks
	2.2.3.7 Testing
	2.2.3.8 Project features
	2.2.3.9 Configuration	2.2.3.9.1 .yaml file configuration

	2.2.3.10 Limitations
	2.2.3.11 References

	2.2.4 Cloudmesh Storage Provider for AwsS3 ☁️	2.2.4.1 Objective
	2.2.4.2 Technologies
	2.2.4.3 Architecture
	2.2.4.4 AWSS3 to Local and Local to AWSS3 Storage Provider
	2.2.4.5 Pytest Benchmark Results

	2.3 SERVICES	2.3.1 Cloudmesh Object Life Cycle Management Service ☁️	2.3.1.1 Abstract
	2.3.1.2 Introduction
	2.3.1.3 Architecture
	2.3.1.4 Installation on Windows
	2.3.1.5 Installation on Linux
	2.3.1.6 Usage
	2.3.1.7 Testing with Pytest
	2.3.1.8 Supporting Documentation:

	2.3.2 Cloudmesh Frugal ☁️	2.3.2.1 Usage
	2.3.2.2 Notes	2.3.2.2.1 Installation

	2.3.2.3 Abstract
	2.3.2.4 Introduction
	2.3.2.5 Design	2.3.2.5.1 Architecture

	2.3.2.6 Benchmarks
	2.3.2.7 References

	2.4 SECURITY	2.4.1 Encryption of Cloudmesh Config File Secrets ☁️	2.4.1.1 Introduction
	2.4.1.2 Installation and Using Cloudmesh Config Encryption
	2.4.1.3 Implementation	2.4.1.3.1 Cloudmesh.Security Section
	2.4.1.3.2 Cloudmesh Tools for Encryption	2.4.1.3.2.1 CmsEncryptor
	2.4.1.3.2.2 CmsHasher
	2.4.1.3.2.3 KeyHandler

	2.4.1.3.3 Encrypting and Decrypting Cloudmesh Attributes	2.4.1.3.3.1 Internal Process for Encryption
	2.4.1.3.3.2 Internal Process for Decryption
	2.4.1.3.3.3 Key Management
	2.4.1.3.3.4 Keys Used in Encryption
	2.4.1.3.3.5 Key Generation
	2.4.1.3.3.6 Verify Key Structure and Password
	2.4.1.3.3.7 Reformatting a Keys Structure and Password

	2.4.1.4 Limitations	2.4.1.4.1 Non-Authenticated Data
	2.4.1.4.2 Password Management
	2.4.1.4.3 Referencing Encrypted Data
	2.4.1.4.4 Encrypting Arbitrarily Large Files
	2.4.1.4.5 Matching More Cases than Intended with Cloudmesh.Security.Secrets Section

	2.4.1.5 References	2.4.1.5.1 Password Managers

	2.4.1.6 Acknowledgments

	2.4.2 Group Key Management for Cloudmesh ☁️	2.4.2.1 Introduction
	2.4.2.2 Implementation	2.4.2.2.0.1 Automating Key Management

	2.4.2.3 Tasks	2.4.2.3.1 CMS Key Command
	2.4.2.3.2 CMS KeyGroup Command

	2.4.2.4 Progress

	2.4.3 Task left
	2.4.4 Usage
	2.4.5 References

	2.5 CLUSTER	2.5.1 Federated Kubernetes Clusters With Raspberry Pi ☁️	2.5.1.1 Abstract
	2.5.1.2 Introduction
	2.5.1.3 Related Work
	2.5.1.4 Architecture
	2.5.1.5 Technologies used
	2.5.1.6 Benchmark and Evaluation
	2.5.1.7 Conclusion
	2.5.1.8 Other documentation files

	2.5.2 Hadoop Clusters With Raspberry Pi ☁️	2.5.2.1 Introduction
	2.5.2.2 Abstract
	2.5.2.3 Architecture
	2.5.2.4 Technologies used
	2.5.2.5 Implementation	2.5.2.5.0.1 Set password, Enable SSH and Reboot Pi
	2.5.2.5.0.2 Simplifying SSH
	2.5.2.5.0.3 Copying the files from one pi across the entire cluster
	2.5.2.5.0.4 Hadoop installation
	2.5.2.5.0.5 Set JAVA_HOME
	2.5.2.5.0.6 HDFS
	2.5.2.5.0.7 To copy the files in /opt/hadoop to all Pis
	2.5.2.5.0.8 Format HDFS
	2.5.2.5.0.9 Boot HDFS
	2.5.2.5.0.10 Test HDFS
	2.5.2.5.0.11 Spark installation
	2.5.2.5.0.12 Test Hadoop and Spark working together
	2.5.2.5.0.13 Versions of Hadoop and Spark
	2.5.2.5.0.14 Test if Spark works on Pi

	2.5.2.6 Benchmarks
	2.5.2.7 Acknowledgements
	2.5.2.8 References

	2.5.3 Spark Cluster Management Abstraction Layer ☁️	2.5.3.1 Introduction
	2.5.3.2 Cloudmesh
	2.5.3.3 Implementation	2.5.3.3.1 Cluster Abstrations	2.5.3.3.1.1 Inventory
	2.5.3.3.1.2 Cluster Dict

	2.5.3.4 Proposal 🅾️ we are long past the proposal stage
	2.5.3.5 Action
	2.5.3.6 Solution
	2.5.3.7 Progress	2.5.3.7.1 Interaction
	2.5.3.7.2 Initialization
	2.5.3.7.3 Deployment
	2.5.3.7.4 How to deploy a Kubernetes Cluster?
	2.5.3.7.5 Deployment with the help of Cloudmesh
	2.5.3.7.6 Deployment with the help of Nomad	2.5.3.7.6.1 Deploying Hadoop to the Nomad Cluster

	2.5.3.8 References

	2.6 NIST DATABASE	2.6.1 Abstract Database Management On Multicloud Environments ☁️	2.6.1.1 Objective
	2.6.1.2 Introduction
	2.6.1.3 Motivation
	2.6.1.4 Architecture Diagram
	2.6.1.5 Technology Detail
	2.6.1.6 Implementation Plan	2.6.1.6.1 Step 1: Cloud Account and Database Instance Creation
	2.6.1.6.2 Step 2: Open API .yaml file	2.6.1.6.2.1 API Specification database.yaml

	2.6.1.6.3 Step 3: Cloudmesh Configuration setup	2.6.1.6.3.1 Add database section for aws and azure in cloudmesh.yaml
	2.6.1.6.3.2 Update .cloudmesh.yaml on local install

	2.6.1.7 Progress
	2.6.1.8 References

	2.6.2 Deployement Of Databases in Multiple Cloud ☁️	2.6.2.1 Objective
	2.6.2.2 Facts and comparisions about top could service providers
	2.6.2.3 Types of Cloud – Services Models
	2.6.2.4 Enterprice Public Cloud Adaption
	2.6.2.5 Project Synapsis
	2.6.2.6 Technologies
	2.6.2.7 Overview
	2.6.2.8 Implementation and Deployement steps
	2.6.2.9 Test Scenarios
	2.6.2.10 References

	2.7 NIST CLOUD SERVICES	2.7.1 Cloudmesh Cloud AI Service ☁️	2.7.1.1 Architecture Design
	2.7.1.2 Implementation	2.7.1.2.1 Technologies Used

	2.7.1.3 Progress Report	2.7.1.3.1 Work Breakdown	2.7.1.3.1.1 Week 6
	2.7.1.3.1.2 Week 7
	2.7.1.3.1.3 Week 8
	2.7.1.3.1.4 Week 9
	2.7.1.3.1.5 Week 10
	2.7.1.3.1.6 Week 11

	2.7.1.4 Results	2.7.1.4.1 Benchmark

	2.7.1.5 Reference

	2.7.2 Unsupervised Machine Learning using Cloudmesh Cloud AI Services ☁️	2.7.2.1 Introduction
	2.7.2.2 Clutering with K-means	2.7.2.2.1 K-means

	2.7.2.3 Technologies Used
	2.7.2.4 Design

	2.7.3 Implementation	2.7.3.0.1 Architecture Design
	2.7.3.1 Progress
	2.7.3.2 Results
	2.7.3.3 References

	2.8 OTHER	2.8.1 Impletmention of Cloudmesh CMS Command in Rstudio ☁️	2.8.1.1 Abstract
	2.8.1.2 Introduction
	2.8.1.3 Process
	2.8.1.4 Results
	2.8.1.5 Screenshots
	2.8.1.6 Project Checklist	2.8.1.6.1 Limitations
	2.8.1.6.2 Acknowledgment

	2.8.1.7 References
	2.8.1.8 Appendix	2.8.1.8.1 Progress	2.8.1.8.1.1 Week October 14
	2.8.1.8.1.2 Week October 21
	2.8.1.8.1.3 Week November 4
	2.8.1.8.1.4 Week November 11
	2.8.1.8.1.5 Week November 26
	2.8.1.8.1.6 Week of December 2

	2.8.2 Using Cloudmesh in Airflow - Azure and AWS ☁️	2.8.2.1 Abstract
	2.8.2.2 Introduction
	2.8.2.3 Cloudmesh Airflow Architecture	2.8.2.3.1 Motivation
	2.8.2.3.2 Docker Implementation

	2.8.2.4 Airflow - Overview
	2.8.2.5 Airflow - Architecture
	2.8.2.6 Results
	2.8.2.7 Opportunities for Improvement
	2.8.2.8 Implementation Manual	2.8.2.8.0.1 Configure Amazon AWS:
	2.8.2.8.0.2 Configure Azure:
	2.8.2.8.0.3 Local Directory Config:
	2.8.2.8.0.4 Modify DAGs:
	2.8.2.8.0.5 Cloudmesh.yaml Config:
	2.8.2.8.0.6 Startup:
	2.8.2.8.0.7 Airflow UI
	2.8.2.8.0.8 Run Pytests:

	2.8.2.9 References

	2.9 TODO	2.9.1 AI REST Services using Open API ☁️	2.9.1.1 Abstract
	2.9.1.2 Introduction
	2.9.1.3 Related Work
	2.9.1.4 Architecture
	2.9.1.5 Technologies used
	2.9.1.6 Progress
	2.9.1.7 Benchmark and Evaluation
	2.9.1.8 Conclusion
	2.9.1.9 References

	2.9.2 Mutiple source cloud based datawarehouse ☁️	2.9.2.1 Abstract
	2.9.2.2 New Abstract
	2.9.2.3 Objective
	2.9.2.4 New Objective
	2.9.2.5 Motivation
	2.9.2.6 Terminology
	2.9.2.7 Releated Technologies
	2.9.2.8 Architecture
	2.9.2.9 Technology	2.9.2.9.1 OpenAPI
	2.9.2.9.2 Server API
	2.9.2.9.3 Manual

	2.9.2.10 Testing
	2.9.2.11 benchmarks
	2.9.2.12 Progress

	3 REFERENCES

 	
 Cover

 	
 Table of contents

1 PREFACE

Sun Dec 22 19:07:39 EST 2019 ☁️

1.1 Disclaimer ☁️

This book has been generated with Cyberaide Bookmanager.

Bookmanager is a tool to create a publication from a number of sources on the internet. It is especially useful to create customized books, lecture notes, or handouts. Content is best integrated in markdown format as it is very fast to produce the output.

Bookmanager has been developed based on our experience over the last 3 years with a more sophisticated approach. Bookmanager takes the lessons from this approach and distributes a tool that can easily be used by others.

The following shields provide some information about it. Feel free to click on them.

[image: Version] [image: License] [image: Python] [image: Format] [image: Status] [image: Travis]

1.1.1 Acknowledgment

If you use bookmanager to produce a document you must include the following acknowledgement.

“This document was produced with Cyberaide Bookmanager developed by Gregor von Laszewski available at https://pypi.python.org/pypi/cyberaide-bookmanager. It is in the responsibility of the user to make sure an author acknowledgement section is included in your document. Copyright verification of content included in a book is responsibility of the book editor.”

The bibtex entry is

@Misc{www-cyberaide-bookmanager,
 author = {Gregor von Laszewski},
 title = {{Cyberaide Book Manager}},
 howpublished = {pypi},
 month = apr,
 year = 2019,
 url={https://pypi.org/project/cyberaide-bookmanager/}
}

1.1.2 Extensions

We are happy to discuss with you bugs, issues and ideas for enhancements. Please use the convenient github issues at

	https://github.com/cyberaide/bookmanager/issues

Please do not file with us issues that relate to an editors book. They will provide you with their own mechanism on how to correct their content.

2 REPORTS

2.1 COMPUTE

2.1.1 ORACLE

2.1.1.1 Oracle Compute and Storage Service ☁️

	Contributors

	Shivani Katukota, fa19-516-162

	Gregor von Laszewski

	Insights:

	https://github.com/cloudmesh-community/fa19-516-162/graphs/contributors

	https://github.com/cloudmesh/cloudmesh-oracle/graphs/contributors

	Example: https://github.com/cloudmesh/cloudmesh-oracle/blob/master/examples/examples.py

	Code: https://github.com/cloudmesh/cloudmesh-oracle

	Manual: https://github.com/cloudmesh/cloudmesh-manual/blob/master/docs-source/source/accounts/oracle.md

	Benchmark: https://github.com/cloudmesh/benchmark/blob/master/results/cloud-oracle-katukota.txt

	Open Issues:

	https://github.com/cloudmesh/cloudmesh-oracle/issues

	https://github.com/cloudmesh/cloudmesh-storage/issues

2.1.1.1.1 Abstract

Cloudmesh is a multi-cloud project aimed at easy access to computing as well as storage resources. Currently, cloudmesh integrates four cloud service providers: AWS, Azure, Openstack and Google. The aim of this project is to integrate Oracle cloud to cloudmesh.

[image: Cloudmesh]Cloudmesh

2.1.1.1.1.1 Introduction

A multi-cloud environment uses resources from multiple cloud providers. The resources can be computing resources, storage services, database services, or any of the several different services offered by the vendors. A multi-cloud environment gives companies the flexibility to use clouds for services that are better managed by them, avoids vendor lock-in, and is more reliable in the event of a disaster. Using multiple clouds also increases the storage capacity and computing power of the company’s network.

Cloudmesh aims to bring multiple clouds to a single platform. Via a simple command-line tool, Cloudmesh aims to seamlessly integrate tasks such as the creation and utilization of virtual machines from different cloud providers. The user can switch clouds using a single variable. Hence, he does not need to know the process of VM creation on all the clouds.

On 16th September 2019, Oracle announced a free tier. This allows students and professionals to build, test, and deploy applications on the Oracle cloud and database for free for an unlimited time. The free-tier, though, has limits for various services. Two virtual machines and two block volumes, and 10 GB each of object and archive storage is the current limit for free cloud tier accounts. This project aims to integrate the Oracle cloud with Cloudmesh. This will include figuring out the python SDK for the Oracle cloud called OCI (Oracle Cloud Infrastructure). Using OCI, we will allow Cloudmesh to connect and use computing as well as storage resources on the Oracle cloud.

2.1.1.1.1.2 Advantages

	Reliability: There is uncertainty about a single cloud’s reliability. Accidents happen and having down-times can significantly affect business. Hence, organizations are moving towards multi-cloud environments for a reliable network.

	Price: The deployments on the cloud are price-sensitive. Organizations are charged for what they use. If a cloud provider increases their prices by even a small margin, it can lead to a loss for large organizations that depend solely on a single cloud provider.

	Data sovereignty: It is the idea that if data is stored in a digital form, then it is subjected to the laws of the country it is located in. The cloud providers have their data centers in various locations across the globe. Organizations are hence more comfortable with using data centers nearest to their location for sensitive data.

	Vendor lock-in: It is a very tedious and expensive task to switch between cloud providers. It is hence more advisable to use the multi-cloud environment as then moving data from one cloud to another will not take significant effort.

	Specific Services: Some cloud providers such Google provide specialized services for IoT and ML. Organizations that are using a different cloud provider but require such services will have to depend on different vendors.

2.1.1.1.1.3 Current Trends

In a recent survey by Gartner, over 81% of the public cloud users said that they are working with two or more clouds. The main reason they mentioned is to avoid vendor lock-in. In current times, the systems are built to be modular. It is straightforward for organizations to utilize different clouds for their modular systems. This decision also stems from the fact that organizations try to cut costs wherever possible and use resources that best fits their needs at the time. If for any reason, they would like to move to a different cloud, it should be easy. For this reason, Gartner also predicts that by 2021, over 75% of the mid-size and large organizations will move to multi-cloud or hybrid cloud strategies.

2.1.1.1.1.4 Cloudmesh Compute

	cloudmesh-compute project will identify Oracle’s python API and develop its provider.

	cloudmesh-compute project will identify how to manage credentials in Oracle.

	cloudmesh-compute project will write and run pytests on Oracle cloud.

2.1.1.1.1.5 Cloudmesh Storage

	cloudmesh-storage project will add the feature to access storage from Oracle services.

	cloudmesh-storage project will provide a REST service based on OpenAPI that uses the cloudmesh API.

	cloudmesh-storage project will implement virtual directory from local.

2.1.1.1.1.6 Lessons Learnt

	Cloud providers offer a lot of different services like computing resources and storage facilities for both structured and unstructured data.

	Cloud services are ideal resources to store and analyze big data.

	Learned to use the Python SDK to connect to cloud services.

	Learned to use GitHub effectively.

2.1.1.1.2 Acknowledgements

I would like to thank Professor Gregor von Laszewski for his helpful contributions throughout the project via coding, as well as suggestions on how to do better. I would also like to thank Mr. Niranda Perera, for helping me with the project whenever I had issues.

2.1.1.1.3 References

	OCI Documentation, https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/index.html

	Required Keys and OCIDs, https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm

	Cloud Computing book, https://laszewski.github.io/book/cloud/

	https://www.gartner.com/smarterwithgartner/why-organizations-choose-a-multicloud-strategy/

	https://www.gartner.com/en/conferences/apac/infrastructure-operations-cloud-india/featured-topics/cloud

2.1.1.2 Oracle Cloud Account ☁️

On 16th September 2019, Oracle announced a free tier. This allows students and professionals to build, test, and deploy applications on the Oracle cloud and database for free for an unlimited time. The free tier though, has limits for various services. Two virtual machines and two block volumes, and 10 GB each of object and archive storage is the current limit for free cloud tier accounts.

[image: Free Services]Free Services

For cloudmesh, two services are important Oracle Cloud Compute Resources and Oracle Storage.

2.1.1.2.1 Account Creation

Please follow the steps to create a new oracle cloud account and set up the keys and values required for the cloudmesh config file.

Step 1: Go to the Oracle Cloud website to sign up for a free account.

https://myservices.us.oraclecloud.com/mycloud/signup?

Step 2: Fill out your email address and click on Next.

[image: Create Account]Create Account

Step 3: You will be directed to a page to enter your account details. Select Account Type as Personal. Fill out all the other fields and click Next.

[image: Acoount Details]Acoount Details

Step 4: Verify you mobile number using the code that will be messaged to you.

Step 5: Next, you will be asked to select a password. Please select one and click ‘Next’.

[image: Password]Password

Step 6: Fill out your payment information and proceed.

[image: Payment]Payment

Oracle has now created for you a free account with $300 credit for 30 days. After 30 days you can still use the ‘Always Free’ resources. Unless you upgrade, your account will always be free.

[image: Trial]Trial

2.1.1.2.2 Account Login

To login to your account, follow the steps.

Step 1: Go to https://www.oracle.com/cloud/sign-in.html?. Enter the cloud account name you used while registration and click Next.

[image: Login]Login

Step 2: Enter the email address and password you used for registration, and click on Sign In.

[image: Login-Next]Login-Next

Now you’ve successfully signed in to the Oracle Cloud.

You can click on the menu on the left to explore different oracle services. When you try to access compute or storage services, you will first need to select a compartment. A compartment is a logical container to organize you resources. A default compartment with the same name as your cloud name is created. It is easiest to select that compartment.

[image: Compartment]Compartment

2.1.1.2.3 Oracle API

To develop or run code related to oracle, its API called OCI (Oracle Cloud Infrastructure) needs to be installed. To do this, run the command using the command line.

$ pip install oci

2.1.1.2.4 Cloudmesh Config File

Cloudmesh config file (cloudmesh.yaml) will have the following entries for compute and storage respectively. Add them to the config file if not already there.

2.1.1.2.4.1 Compute Entry

cloudmesh:
 ...
 cloud:
 oracle:
 cm:
 active: true
 heading: ORACLE
 host: cloud.oracle.com
 label: oracle
 kind: oracle
 version: TBD
 service: compute
 default:
 image: Oracle-Linux-7.7-2019.11.12-0
 size: VM.Standard.E2.1
 credentials:
 user : TBD
 fingerprint : TBD
 key_file : ~/.oci/oci_api_key.pem
 pass_phrase : TBD
 tenancy : TBD
 compartment_id : TBD
 region : us-ashburn-1

2.1.1.2.4.2 Storage Entry

cloudmesh:
 ...
 storage:
 oracle:
 cm:
 active: true
 heading: Oracle
 host: cloud.oracle.com
 label: oracle
 kind: oracle
 version: TBD
 service: storage
 default:
 directory: TBD
 bucket: home
 credentials:
 user : TBD
 fingerprint : TBD
 key_file : ~/.oci/oci_api_key.pem
 pass_phrase : TBD
 tenancy : TBD
 compartment_id : TBD
 region : us-ashburn-1

2.1.1.2.5 Required Keys and OCIDs

The keys marked as TBD in the config file needs to be filled in using the values from your account. To do this, please follow the steps.

2.1.1.2.5.1 Create API Signing Key

Run the following commands using command line.

Step 1: Create a directory .oci to store the credentials.

$ mkdir ~/.oci

Step 2: Generate the key using the command:

$ openssl genrsa -out ~/.oci/oci_api_key.pem -aes128 -passout stdin 2048

Step 3: You will then be prompted for a passphrase. Select a passphrase and hit Enter.

Step 4: To ensure that only you can read the key, run the following command:

$ chmod go-rwx ~/.oci/oci_api_key.pem

Step 5: Now, generate the public key and hit enter. You will again be prompted for the passphrase. Please enter the passphrase created while creating the private key and hit Enter.

$ openssl rsa -pubout -in ~/.oci/oci_api_key.pem \
 -out ~/.oci/oci_api_key_public.pem \
 -passin stdin

Step 6: Copy the contents of the public key to the clipboard as you will require this.

Step 7: Add the passphrase to your config file cloudmesh.yaml under oracle section.

🅾️ you should have a program that does thsi for you such as

cms register oracle [--dir=~/.oci]

2.1.1.2.5.2 User

The value for user in the config file is the OCID of your user of the oracle cloud account. You can find this using the following steps:

Step 1: Click on the profile menu on the right and click on User Settings.

[image: User-Details]User-Details

Step 2: The user OCID can be found under User Information. Copy and paste it to the config file.

[image: User]User

Step 3: Go to the end of web page and click on Add Public Key under API Keys.

[image: Public Key]Public Key

Step 4: Paste the contents of the public key ~/.oci/oci_api_key_public.pem to the text-box in the pop-up and click Add.

[image: Add Public Key]Add Public Key

Step 5: A new key will be added to the API Keys. Copy the Fingerprint of the key and paste it in the config file.

2.1.1.2.5.3 Tenancy

The value for tenancy in the config file is the OCID of your tenancy account. You can find this using the following steps:

Step 1: Click on the navigation menu on the left, go to Administration and click on Tenancy Details.

[image: Tenancy]Tenancy

Step 2: The tenancy OCID can be found under Tenancy Information. Copy and paste it to the config file.

[image: Tenancy Details]Tenancy Details

2.1.1.2.5.4 Compartment

The value for compartment in the config file is the OCID of your selected compartment. You can find this using the following steps:

Step 1: Click on the navigation menu on the left, go to Identity and click on Compartments.

[image: Identity]Identity

Step 2: Select your root compartment from the compartment list.

[image: Select Compartment]Select Compartment

Step 3: The compartment OCID can be found under Compartment Information. Copy and paste it to the config file.

[image: Compartment Details]Compartment Details

2.1.1.2.5.5 Public Key

Add the path to the ssh public key in the cloudmesh.yaml file in cloudmesh /profile/publickey.

2.1.1.2.6 Compute Service

The first thing we need to make sure is that a private public ssh key pair has been set up in the default directory ~\.ssh\id_rsa.pub. This key will be used to login into the virtual machine instances created by us.

To set the cloud to oracle, use the command:

$ cms set cloud=oracle

To create a new instance on oracle cloud, use the command:

$ cms vm boot

To login into the instance, use the command:

$ cms vm ssh

To stop the instance, use the command:

$ cms vm stop 'vm-name'

To terminate the instance, use the command:

$ cms vm terminate 'vm-name'

2.1.1.2.7 Storage Service

The first time you try to access storage services, it wil be empty and any operation to list/get/delete will result in an error. Hence, to start first put a new file on the cloud. This will result in creation of a new bucket with the name specified in cloudmesh.yaml.

create dir command to create a directory on the cloud object storage system is not supported in Oracle. Only when uploading a file can a directory structure be created. IF all the files in the directory are deleted, the directory is deleted too.

To upload a new file/directory to the cloud, use the command:

$ cms storage --storage=oracle put SOURCE DESTINATION

To download a file from the cloud, use the command:

$ cms storage --storage=oracle get SOURCE DESTINATION

To list all the files from the bucket/directory, use the command:

$ cms storage --storage=oracle list SOURCE

To delete a file/directory from the cloud, use the command:

$ cms storage --storage=oracle delete SOURCE

Note that if a directory is deleted, all the files inside the directory are also deleted.

To search a file in a particular directory, use the command:

$ cms storage --storage=oracle search DIRECTORY FILENAME

2.1.1.2.8 References

	OCI Documentation, <https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest /index.html>

	Required Keys and OCIDs, https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm

2.1.1.2.9 MNIST Deep Learning Example ☁️

The MNIST database contains around 60,000 images of handwritten digits. This database is used as a standard for training various image processing deep learning systems. As a part of this project, a simple neural network with two dense layers and one activation layer was created. This code is saved on the Oracle cloud object storage. We download the file using the Oracle storage get command.

$ cms storage --storage=oracle get ‘big-data\mnist-deep-learning.py’
‘mnist-deep-learning.py’

To run the python file, cloudmesh-common and tensorflow is required. Currently, tensorflow is only supported for python version 3.7 and below.

Install cloudmesh-common using the command:

$ pip install cloudmesh-common

Install tensorflow using the command:

$ pip install tensorflow

The downloaded file is then executed using the command:

$ python 'mnist-deep-learning.py'

One of the hand-written digit images in the database is ‘5’ as shown in the figure.

[image: Digit-Figure]Digit-Figure

The model is trained on 60,000 samples. The figure shows the loss and accuracy for each epoch.

[image: Training]Training

The figure shows the benchmarks for the model.

[image: Model Benchmark]Model Benchmark

Next, the training loss and accuracy for the model are plotted.

[image: Model Loss]Model Loss

[image: Model Accuracy]Model Accuracy

2.1.2 Cloudmesh Compute Project for Google Cloud Platform (GCP) ☁️

Harshawardhan Pandit, fa19-516-169

🅾️ see the report.md file for others, they have links that you need to include

We cannot review your project without the links to your code and so on.

2.1.2.1 Abstract

Cloudmesh enables you to access multi-cloud environments such as AWS, Azure, Google, and OpenStack Cloudsvery easily. The purpose of this project is to implement identified features for the Google Cloud Platform. The two cloud interface will be implemented using:

	Google Cloud Platform

	AWS

Selected APIs will be added for the following features:

	Images

	Flavors

	Virtual machines

	Keys

	Security groups

2.1.2.2 Architecture

[image: Architecture]Architecture

2.1.2.3 APIs

Typical List of APIS to be developed may include in the follow categories:

2.1.2.3.1 VM

	start

	reboot

	stop

	resume

	suspend

	info

	status

	list

	create

	create_vm_parameters

2.1.2.3.2 Flavors

	flavors

	flavor

2.1.2.3.3 image

	image

2.1.2.3.4 keys

	keys

	key_uplo

	key_delete

2.1.2.3.5 Security groups

	ssh

	get_resource_group

	set_server_metadata

	delete_server_metadata

	list_secgroups

	list_secgroup_rules

	add_secgroup

	add_secgroup_rule

	remove_secgroup

	upoad_secgroup

	add_rules_to_secgroup

	remove_rules_from_secgroup

2.1.2.4 Technologies

	Python 3.7.4

	REST API

	Cloudmesh

2.1.2.5 Progress

2.1.2.5.1 Week of 22nd Sep

	Project Definition and approval

2.1.2.5.2 Week of 7th Oct

	Rest API ramp up

2.1.2.5.3 Week of 14th Oct

	Cloudmesh Installation on Windows. Solving the laptop issues and finally succeeded in Cloudmesh installation on Windows 10 environment.

2.1.2.5.4 Week of 21st Oct

	Study of existing Cloudmesh Compute Project/source code structure.

	Initial Architecture Diagram (In Progress).

	Listing down potential APIs for Cloudmesh Compute GCP Interface.

	Initial study of Compute Engine API from Google.

	Creation of WBS. Plan.

2.1.2.6 Work Breakdown Structure

This is intended WBS and schedule. This can change as we proceed as the proposed plan below and will evolve.

	Week of 28th Oct: Architecture, Design finalization.

	Week of 4th Nov:

	API signature definition and scope freeze (This should define how many APIs will be)

	Environment creation and Code Framework Creation (Skeleton, stub and dummy test cases)

	Week of 11th Nov: Selected APIs for VM

	Week of 18th Nov: Selected APIs for Image

	Week of 25th Nov: Selected APIs for Security

	Week of 2nd Dec:

	Buffer

	Documentation completion

	Pending PyTest (if any) completion

2.1.2.7 Results

2.1.2.8 Benchmark

TBD Benchmarking will be added as the interfaces are defined

2.1.2.9 Testing

TBD Pytests will be added to the interfaces, as the APIs are developed.

2.1.2.10 References

	https://cloudmesh.github.io/cloudmesh-manual/projects/project-compute.html

	https://github.com/cloudmesh/cloudmesh-cloud/tree/master/cloudmesh/compute

2.1.3 Benchmark Compute Providers ☁️

Chenxu Wang, fa19-516-157

	fa19-516-157

	Link to custom benchmark script

	Link to custom benchmark output

2.1.3.1 Goal

	Benchmark the current cloudmesh compute commands on different providers

2.1.3.1.1 Result

[image: benchmark result]benchmark result

2.1.3.2 Insights

	aws is the most efficient out of 3 providers, as expected

	azure is really fast in retrieving flavor and image list compared to aws

	azure takes long time to boot vm compared to aws because azure has to create all resources one by one where aws has default resources ready, and the azure api has long poller structure.

	same as previous point, azure terminate takes long time because the provider will delete every resource related to the terminating vm, which is a potential bug if two vm share same resources.

2.1.3.3 Discoveries

	ssh error, seems to be a mongodb key lookup error when looking for publicIP, but there are users stated that ssh works for them

[image: ssh error]ssh error

	Update ssh error(Week of December 8)

	The public_ip look up error has been resolved and vm ssh is working on azure, but aws still seems to encounter error “connection refused by remote”, possibly due to secrule

	Chameleon:

	booting multiple vms will definitely fail because sometimes chameleon takes long time to boot 1 vm (longest I’ve encountered is 11 minutes) and provider will time out

	user will encounter problem if he try to start vm immediately after stop vm, or vice versa chameleon takes longer time to process the vm actions

	AWS:

	cms image list –refresh will encounter error, the correct results are retrieved successfully from aws, the results are stored in temp file in .cloudmesh and is correct.

[image: aws-image-error]aws-image-error

The error is likely with the mongodb operations in aws provider

	vm terminate outputs error but it actually works, it is likely the flatdict function encountered empty dictionary when trying to display result

	Azure:

	user need to use command cms set key=keyname & cms key init before using azure as cloud, cms init doesn’t include key init.

	vm terminate in azure provider should be restructured to terminate the vm only, currently terminate will delete all resource related to vm, if two vm share same resources such as NIC, SecGroup then terminate can cause error.

	cms image list –refresh doesn’t seem to be displaying the correct images, the displayed images doesn’t seem to be official images like Ubuntu, Centos, following table is the azure image output

	Update: After further investigation and discussing with TA, the image list is getting retrieved , It is just displaying first few images of the entire output.

	Name
	Location
	Publisher
	Plan Name
	Product
	Operating System

	1.0.0
	eastus
	128technology
	128t_networking_platform
	128t_networking_platform
	

	1.1.0
	eastus
	128technology
	128t_networking_platform
	128t_networking_platform
	

	1.1.2
	eastus
	128technology
	128t_networking_platform
	128t_networking_platform
	

	4.10.11
	eastus
	1e
	tachyonv4-1
	tachyonv30-0-100
	

	0.0.2
	eastus
	2021ai
	grace_vm
	grace-churn-vm
	

	16.0.8
	eastus
	3cx-pbx
	16
	3cx-pbx
	

	5.2.5
	eastus
	4psa
	vpn525-single
	voipnow
	

2.1.3.3.1 How to Use This Custom Benchmark Script

	Before using this script, users need to complete the initial cloudmesh setup process, including cms init, cms key init, and upload public key onto cloud providers. Note, azure doesn’t support key storage.

	Adjust the cloud_providers list in line 19 of compute_BenchMarker.py, if there are more cloud providers implemented in cloudmesh.

	To run the script, simply type python compute_BenchMarker.pyin a terminal under same directory as the script.

2.1.3.4 Progress

2.1.3.4.1 Week 8 October 14

	Implemented a script using azure python libraries to start compute service without cloudmesh

	Found the methods needed to create security group in azure package

	Successfully created security group when creating vm

	Link to Azure practice script

2.1.3.4.2 Week 9 October 21

	Attached Network Security Group when creating VM

	Link to Azure practice script

2.1.3.4.3 Week 10 October 28

	Started working in cloudmesh-compute-azure, added network secGroup attachment

	Link to forked cloudmesh-compute repo

2.1.3.4.4 Week 11 November 4

	Added key attachment during vm creation

	Solved error within local env, had to reinstall cloudmesh

	Link to forked cloudmesh-compute repo

2.1.3.4.5 Week 12 November 11

	added ssh function in azure provider

	restructured local repo to work directly in environment

	Link to forked cloudmesh-compute repo

2.1.3.4.6 Week 13 November 18

	The provider was finished by TA, changing to benchmark compute providers

	Solved a minor bug in cms vm start

	Wrote a script that will run compute commands through different clouds Link to benchmark script

	Documented instructions on how to generate important credentials for azure API Link to credential instruction

2.1.3.4.7 Week 15 December 2

	Benchmarked cloudmesh with cloudmesh tests

	Link to 1-local-wang542

	Link to cloud-aws-wang542

	Link to cloud-openstack-wang542

	Link to cloud-azure-wang542

	Link to complete output of benchmarkers

2.1.3.4.8 Week 16 December 8

	Tested updated compute with custom script

	Benchmarked updated cloudmesh with cloudmesh tests

	Link to cloud-aws-wang542-v2

	Link to cloud-azure-wang542-v2

	Link to cloud-openstack-wang542-v2

2.1.3.5 Reference

	Create VM on Azure using Python

	Issue/Example related to NSG creation on github-azure

	Discussion regarding NSG security rules

	Azure documentation-Security Group

	Azure Security Rules Operation class -python

2.2 STORAGE

2.2.1 GOOGLE

2.2.1.1 Cloudmesh Data Transfer Between Local, Azure and Google Google cloud Storage Service (Cloudmesh Data Transfer Service) ☁️

Shreyans Jain, fa19-516-160

🅾️ see the report.md file for others, they have links that you need to include

We cannot review your project without the links to your code and so on.

Special note: With the class progression my project was changed to “google storage provider” part of new CMS module cloudmesh-google .

2.2.1.1.1 Abstract

🅾️

TBD

	Azure blob to Google cloud storage and vise versa Cloudmesh Storage Provider for Virtual Directories: see cloudmesh-storage to start. develop OpenAPI REST services for it

	Py Test

2.2.1.1.2 Objective

Provide cloudmesh users an API and REST service to transfer files, directories from data storage of one cloud service provider to other cloud service provider. This packge will consider Azure Blob storage to Google cloud for current implementation.

2.2.1.1.3 Motivation

Cloud technology evolves at a very fast rate. Due to which, policies and facilities provided by cloud service providers change as well. There could be various practical scenarios in which users want to transfer the data currently stored in AWS S3 to Azure Blob. Such scenarios could be change in pricing policy or storage capacity rules of AWS S3 or Azure Blob.

Cloudmesh is a multicloud platform. With inclusion of data transfer service, a highly optimized and simple to use methos will be made available to cloudmesh users.

2.2.1.1.4 Architecture

[image: Architecture]Architecture

[image: Architecture]Architecture

2.2.1.1.5 Technology

	Python

	cloudmesh storage

	OpenAPI 3.0.2

	REST

	Azure blob storage

	Google Cloud Storage

2.2.1.1.6 Usage

🅾️ Your manual page is not in 80 column format fix here and in code

 Usage:
 transfer config [--file=ip_file]
 transfer --id=<transfer_id> --data=<file_name> [--copy=True|False]
 transfer status --id=<transfer_id>
 transfer statistic

 This command is part of CloudMesh's multicloud storage service. Command allows users to transfer
 files/directories from storage of one Cloud Service Provider (CSP) to storage of other CSP.
 Current implementation is to transfer data between Azure blob storage and AWS S3 bucket.

 Arguments:
 transfer_id A unique id/name assigned by user to each transfer instance
 file_name Name of the file/directory to be transferred
 Boolean True/False argument for --copy option. When False, data will be removed from source location
 ip_file Input file used to configure 'transfer' command

 Options:
 --id=transfer_id Specify a unique i/name to the transfer instance
 --data=file_name Specify the file/directory name to be transferred
 --copy=True|False Specify is the data should be kept in source location after the transfer
 --file=ip_file Specify the file to be used for configuration of the transfer instance
 -h Help function

 Description:
 transfer config [options..]
 Configures source/destination and authentication details to be used by transfer command

 transfer [options..]
 Transfers file/directory from storage of one CSP to storage of another CSP

 transfer status [options..]
 Returns status of given transfer instance

 transfer statistic
 Returns statistics of all transfer processes

 Examples:
 transfer --id="Dummy transfer" --data=dummy_file.txt --copy=True

	REST service: TBD

2.2.1.1.7 Benchmarks

TBD - Benchmark report to be created

	Benchmarks of what has been developed leveraging cloudmesh convenient

	stopwatch.

2.2.1.1.8 Testing

TBD - PyTest report to be created

2.2.1.1.9 References

	https://cloud.google.com/docs/compare/azure/

	https://cloud.google.com/docs/compare/azure/storage

2.2.2 Cloudmesh Storage Provider for Virtual Directories between AWS and Google ☁️

Pratibha Madharapakkam Pagadala | fa19-516-152

Project Code | Project Report | Contributors

2.2.2.1 Introduction

This project is to develop API and rest services to manage and transfer files between different cloud service providers. A cloudmesh based command will be implemented to transfer files from a source to target cloud provider. In this instance, the functionality will be implemented for AWS and Google Cloud. For performance evaluation py tests will be created.

2.2.2.2 Motivation

Multiple cloud providers offer storage solutions to manage data in the form of files. The intention here is to build a command which can provide functionality to move them from a source to a target cloud provider’s storage. In this method, users will be able to split or move the data across different cloud providers that provider cheaper solutions.

2.2.2.3 Architecture Diagram

[image: Architecture]Architecture

Description

	Client intiates a cms storage_switch command with options such as

	Recursive file copy from source to target

	List the files

	Add the files

	delete the files

	Cloudmesh storage_switch command will run on the local server. According to the options and arguments, this would delegate the functions between AWS and Google Cloud.

	Storage and Utility APIs on AWS and Google cloud.

2.2.2.4 Technology Used

	cloudmesh-storage

	Python

	REST

	AWS S3 Storage

	Google Drive Storage

	OpenAPI

2.2.2.5 Implementation Plan

Usage:
storage_service copy --source=SOURCE:SOURCE_FILE_DIR --target=TARGET:TARGET_FILE_DIR
storage_service list --source=SOURCE:SOURCE_FILE_DIR
storage_service delete --source=SOURCE:SOURCE_FILE_DIR

This command does some useful things.

Arguments:
 SOURCE:SOURCE_FILE_DIR source provider name : file or directory name
 TARGET:SOURCE_FILE_DIR destination provider name

Options:
 --source=SOURCE:SOURCE_FILE_DIR specify the cloud:location
 --target=TARGET:LOCATION specify the target:location

Description:
Command enables to Copy files between different cloud service providers, list and delete them.
This command accepts "aws" , "google" and "local" as the SOURCE and TARGET provider

cms storage_service copy --source=SOURCE:SOURCE_FILE_DIR --target=TARGET:TARGET_FILE_DIR
 Command copies files or directories from Source provider to Target Provider.

cms storage_service list --source=SOURCE:SOURCE_FILE_DIR
 Command lists all the files present in SOURCE provider's in the given SOURCE_FILE_DIR location
 This command accepts "aws" or "google" as the SOURCE provider

cms storage_service delete --source=SOURCE:SOURCE_FILE_DIR
 Command deletes the file or directory from the SOURCE provider's SOURCE_FILE_DIR location

Example:
cms storage_service copy --source=local:test1.txt --target=aws:uploadtest1.txt
cms storage_service list --source=google:test
cms storage_service delete --source=aws:uploadtest1.txt

2.2.2.6 Dependencies / Constraints

	storage service command utiltizes cloudmesh awss3’s Provider class for list, put, get and delete methods.

	Google Cloud Provider is developed using google’s Storage API.

	The command has been tested on Windows 10.

2.2.2.7 Testing

PyTest have been executed to test the functionality - Code

pytest -v –capture=no -W ignore::DeprecationWarning /test/Test_storage_service.py > testResults.txt

2.2.2.8 Benchmarks

Benchmarks results - storage_service benchmarks

2.2.2.9 References

	https://github.com/googleapis/google-cloud-python#google-cloud-python-client

	https://aws.amazon.com/s3/

	https://boto3.amazonaws.com/v1/documentation/api/latest/guide/resources.html

	https://github.com/cloudmesh/cloudmesh-storage/tree/master/cloudmesh/storage

2.2.3 Cloudmesh File Transfer Service for AWS S3 and Azure Blob ☁️

Ketan Pimparkar, kpimpark@iu.edu, fa19-516-155

Gregor von Laszewski

	Contributors

	Insights

	Code

2.2.3.1 Objective

Provide cloudmesh users an API to transfer files,directories from data storage of one cloud service provider to other cloud service provider. This package will consider AWS S3 and Azure Blob storage for current implementation.

2.2.3.2 Motivation

Cloud technology evolves at a very fast rate. Due to which, policies and facilities provided by cloud service providers change as well. There could be various practical scenarios in which users want to transfer the data currently stored in AWS S3 to Azure Blob. Such scenarios could be change in pricing policy or storage capacity rules of AWS S3 or Azure Blob.

Cloudmesh is a multicloud platform. With inclusion of data transfer service, a highly optimized and simple to use methods will be made available to cloudmesh users.

2.2.3.3 Architecture

[image: CM Transfer Architecture Diagram]CM Transfer Architecture Diagram

2.2.3.4 Technology

	AWS S3

	Azure blob storage

	Python 3.7

	cloudmesh storage

	OpenAPI 3.0.2

	REST

2.2.3.5 Usage

2.2.3.5.1 cms storage copy command

cms storage code base is enhanced to allow copying of files between two cloud storage providers. This code is available at cloudmesh storage.

	Supported cloud storages:

	AWS S3

	Azure Blob Storage

	Oracle object storage

	Google cloud storage

	Local storage provider

Usage:
 storage copy SOURCE DESTINATION

Description:
 Copies files from source storage to destination storage.
 The syntax of SOURCE and DESTINATION is:
 SOURCE - awss3:source.txt
 DESTINATION - azure:target.txt

Example:
 storage copy azure:source.txt oracle:target.txt

	Sample commands for cms storage copy:

Copy file from google cloud storage to local storage

$ cms storage copy google:newfolder/anew.txt local:'~/cmStorage'

Copy file from oracle storage to google storage

$ cms storage copy oracle:a.txt google:

2.2.3.5.2 cms transfer command (Deprecated - moved to storage copy)

	cms transfer manual

	Code

Usage:
 transfer copy --source=awss3:source_obj --target=azure:target_obj [-r]
 transfer list --target=awss3:target_obj
 transfer delete --target=awss3:target_obj

 This command is part of Cloudmesh's multi-cloud storage service.
 Command allows users to transfer files/directories from storage of
 one Cloud Service Provider (CSP) to storage of other CSP.
 Current implementation is to transfer data between Azure blob
 storage and AWS S3 bucket.
 AWS S3/ Azure Blob storage credentials and container details will
 be fetched from storage section of "~\.cloudmesh\cloudmesh.yaml"

 Arguments:
 awss3:source_obj Combination of cloud name and the source object name
 source_obj Source object. Can be file or a directory.
 azure:target_obj Combination of cloud name and the target object name
 target_obj Target object. Can be file or a directory.
 transfer_id A unique id/name assigned by cloudmesh to each
 transfer instance.

 Options:
 --id=transfer_id Unique id/name of the transfer instance.
 -h Help function.
 --source=aws:source_obj Specify source cloud and source object.
 --target=azure:target_obj Specify target cloud and target object.
 -r Recursive transfer for folders.

 Description:
 transfer copy --source=<awss3:source_obj>
 --target=<azure:target_obj> [-r]
 Copy file/folder from source to target. Source/target CSPs
 and name of the source/target objects to be provided.
 Optional argument "-r" indicates recursive copy.

 transfer list --target=awss3:target_obj
 Enlists available files on target CSP at target object

 transfer delete --target=awss3:target_obj
 Deletes target object from the target CSP.

 Examples:
 transfer copy --source=awss3:sampleFileS3.txt
 --target=azure:sampleFileBlob.txt

Examples of commands for cms transfer:

Enlist content of the target location

$ cms transfer list --target=azure:

Delete a file from target storage

$ cms transfer delete --target=awss3:a.txt

Copy file from source storage to target storage

cms transfer copy --source=awss3:anew.txt --target=azure:

2.2.3.6 Benchmarks

	storage copy benchmarks

	Benchmark results:

[image: benchmark_results]benchmark_results

	Transfer Benchmarks

2.2.3.7 Testing

	PyTests:

	cms storage pytests

	cms transfer pytests

	Results of pytest execution:

	Results cms storage copy pytests

	Results cms transfer pytests

2.2.3.8 Project features

	cms storage copy command:

	Copy command allows users to copy files between five cloud storage, which are: AWS S3, Azure blob storage, Google cloud storage, Oracle cloud storage and local storage.

	Pytests are created to test copy command with files of various sizes such as 1 MB and 10 MB.

	Benchmarking is done to evaluate performance of copy command between mentioned cloud storages.

	cms transfer command:

	Methods such as list, delete, and copy are implemented using cloudmesh storage providers. cms-transfer

	Pytests and benchmarks are done.

	cms cloud 1_local modifications:

	Modifications to the 1_local test were done for windows. Code

2.2.3.9 Configuration

2.2.3.9.1 .yaml file configuration

	The location of the yaml file ~/.cloudmesh/cloudmes.yaml

	Local storage configuration:

cloudmesh:
 storage:
 ...
 local:
 cm:
 s3active: true
 blobactive: true
 heading: local_to_CSP
 host: localhost
 kind: local
 label: local_storage
 version: 0.1
 service: storage
 default:
 directory: ~\cmStorage
 credentials:
 userid: None
 password: None

	default.directory is the location of local storage

	AWS S3 storage configuration:

cloudmesh:
 storage
 ...
 awss3:
 cm:
 active: false
 heading: homedir
 host: aws.com
 label: home-dir
 kind: awss3
 version: TBD
 service: storage
 default:
 directory: /
 credentials:
 access_key_id: XXX
 secret_access_key: XXX
 bucket: XXX
 region: us-east-2

	Azure Blob storage configuration:

cloudmesh:
 storage:
 ...
 azure:
 cm:
 active: false
 heading: AWS
 host: azure.mocrosoft.com
 label: azure_blob
 kind: azureblob
 version: TBD
 service: storage
 default:
 resource_group: Cloudmesh
 location: 'East US'
 credentials:
 account_name: ***
 account_key: ***
 container: transferreddata
 AZURE_TENANT_ID: xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
 AZURE_SUBSCRIPTION_ID: xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
 AZURE_APPLICATION_ID: xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
 AZURE_SECRET_KEY: TBD
 AZURE_REGION: northcentralus """

2.2.3.10 Limitations

	Currently cms storage copy command uses local storage as intermediate storage for copying files between two cloud storage services.

	Further research is needed to check if utilities such as azcopy are available to copy files from one cloud storage to another without using intermediate local storage.

	azcopy implementation from AWS S3 to Azure Blob copy is required

2.2.3.11 References

	AzCopy https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-s3?toc=%2fazure%2fstorage%2fblobs%2ftoc.json

	AWS Boto3 API https://boto3.amazonaws.com/v1/documentation/api/latest/index.html?id=docs_gateway

	Cloudmesh manual https://cloudmesh.github.io/cloudmesh-manual/preface/about.html

	Install Azure python SDK https://docs.microsoft.com/en-us/azure/python/python-sdk-azure-install

	Azure python API usage https://github.com/Azure-Samples/storage-blobs-python-quickstart/blob/master/example.py

	Cloud computing book by Gregor von Laszewski https://laszewski.github.io/book/cloud/

	cloudmesh-cloud https://cloudmesh.github.io/cloudmesh-manual/manual-compute.html

	cloudmesh-storage https://cloudmesh.github.io/cloudmesh-manual/concepts/storage.html

2.2.4 Cloudmesh Storage Provider for AwsS3 ☁️

Jagadeesh Kandimalla, fa19-516-171

https://github.com/cloudmesh-community/fa19-516-171

Contributors

The AWSS3 Storage Provider interacts with Cloudmesh Shell and The Storage functions of the provider are available through Cloudmesh command line. The documentation related the the Storage provider can be been in the below documentation link.

	Documentation: https://cloudmesh.github.io/cloudmesh-manual/storage/storage.html

The functions and the arguments given to the functions are explained in this API documentation.

	API: https://cloudmesh.github.io/cloudmesh-manual/api/cloudmesh.storage.provider.awss3.html

The code should always be referred on the cloudmesh-storage module in the master branch

	Code: https://github.com/cloudmesh/cloudmesh-storage/tree/master/cloudmesh/storage

2.2.4.1 Objective

The Objective was to completely fix the AWSS3 provider and create new functions wherever needed(like Bucket exists and Bucket Create) and fix/create Pytests for storage and file sizes. Size Pytests are used for benchmarking the functions with different size input files.

2.2.4.2 Technologies

	AWS S3(Amazon Simple Storage Service (Amazon S3) is an object storage service that that offers industry-leading scalability, data availability, security, and performance.)

	OpenAPI 3.0.2(An OPENAPI is an publicly available API that provides developers with Programmatic access to proprietary software application or web service)

	Python

2.2.4.3 Architecture

[image: architecture]architecture

2.2.4.4 AWSS3 to Local and Local to AWSS3 Storage Provider

AWSS3 Storage provider has implemented with the below functions.

Here is the Usage.

Usage:

 storage [--storage=SERVICE] create dir DIRECTORY
 storage [--storage=SERVICE] get SOURCE DESTINATION [--recursive]
 storage [--storage=SERVICE] put SOURCE DESTINATION [--recursive]
 storage [--storage=SERVICE] list [SOURCE] [--recursive] [--output=OUTPUT]
 storage [--storage=SERVICE] delete SOURCE
 storage [--storage=SERVICE] search DIRECTORY FILENAME [--recursive] [--output=OUTPUT]
 storage config list [--output=OUTPUT]

This command does some useful things.

Arguments:

 SOURCE SOURCE can be a directory or file
 DESTINATION DESTINATION can be a directory or file
 DIRECTORY DIRECTORY refers to a folder on the cloud service

Options:

 --storage=SERVICE specify the cloud service name like aws or
 azure or box or google

Description:

 commands used to upload, download, list files on different
 cloud storage services.

 storage put [options..]
 Uploads the file specified in the filename to specified
 cloud from the SOURCEDIR.

 storage get [options..]
 Downloads the file specified in the filename from the
 specified cloud to the DESTDIR.

 storage delete [options..]
 Deletes the file specified in the filename from the
 specified cloud.

 storage list [options..]
 lists all the files from the container name specified on
 the specified cloud.

 storage create dir [options..]
 creates a folder with the directory name specified on the
 specified cloud.

 storage search [options..]
 searches for the source in all the folders on the specified
 cloud.

There are some additional functions available for other Storage Providers which can be found in the below link.

	https://github.com/cloudmesh/cloudmesh-manual/blob/master/docs-source/source/manual/storage.rst

The code is available in

	https://github.com/cloudmesh/cloudmesh-storage/tree/master/cloudmesh/storage

In the Storage Provider directory both for awss3 and local provider new code have been changed and existing code is modified.

The AWS Account creation has been provided in

	https://cloudmesh.github.io/cloudmesh-manual/accounts/aws.html

The complete documentation and YAML file update we should do is in

	https://cloudmesh.github.io/cloudmesh-manual/storage/storage.html

The Pytests related to Awss3 and local are in

	https://github.com/cloudmesh/cloudmesh-storage/tree/master/tests

The Pytests which should be run in the code are

test_storage.py

test_storage_local.py

test_storage_size.py

2.2.4.5 Pytest Benchmark Results

	Pytest test_storage_py benchmark results

	Pytest test_storage_local.py results

	Pytest put and get benchmarks for 1.5GB file

	Pytest put and get benchmarks for 750MB file

	Benchmarks file using newly written test_storage_size.py

2.3 SERVICES

2.3.1 Cloudmesh Object Life Cycle Management Service ☁️

Bill Screen | wscreen@iu.edu | Indiana University | hid: fa19-516-167

2.3.1.1 Abstract

As the volume of data being generated and stored by cloud service providers (CSP) continues to grow at a rapid pace, managing the lifecycle of stored data in a thoughtful manner becomes necessary to control costs and accurately forecast spending.

According to the VisualCapitalist.com,

"By 2025, it is estimated that 463 exabytes of data will be created
each day globally – that is the equivalent of 212,765,957 DVDs per
day!"

As of 11/2019, it currently costs ~$20,000 USD to store 1 PB of data in the cloud.

Without a data lifecycle management strategy, objects sent to a CSP could be stored indefinitely. Even if the objects (data) are infrequently or never accessed, the customer will likely be charged for storage (beyond a certain free storage limit). This will ultimately lead to ‘sloppy storage’ and the ‘deletion dilemma’.

By strategically applying a lifecycle storage policy to control costs and accurately forecast spending, organizations can prevent cost overruns and are better positioned to successfully manage their data in the cloud. Storage lifecycle policies will be particularly important for government organizations and public universities who store large amounts of data but typically have limited budgets.

2.3.1.2 Introduction

The goal of this project is to build a solution which adds Storage Lifecycle Management service functionality to Cloudmesh. This solution will allow users to manage storage lifecyles in multiple cloud service providers.

This service is intended to be used in conjunction with the Cloudmesh storage project https://github.com/cloudmesh/cloudmesh-storage

Implementation of lifecycle policies will be provided for AWS and GCP in the initial release.

2.3.1.3 Architecture

[image: Project Architecture]Project Architecture

This service provides a standard command-line interface that allows you to set the storage lifecycle policy rules for storage buckets in multiple CSPs.

2.3.1.4 Installation on Windows

python -m venv env3
env3\Scripts\activate
mkdir cm
cd cm
pip install cloudmesh-installer
cloudmesh-installer git clone cloud
cloudmesh-installer install cloud
git clone https://github.com/cloudmesh/cloudmesh-storagelifecycle
cd cloudmesh-storagelifecycle
pip install -e .

echo "Installation Complete"

2.3.1.5 Installation on Linux

alias python=python3
sudo apt-get install python3.6-dev
sudo apt-get install python3-venv

python -m venv env3
source env3/bin/activate
mkdir cm
cd cm
pip install pip
pip install cloudmesh-installer
cloudmesh-installer git clone cloud
cloudmesh-installer install cloud
git clone https://github.com/cloudmesh/cloudmesh-storagelifecycle
cd cloudmesh-storagelifecycle
pip install -e .

echo 'Installation Complete'

Note:

For Google, run:

gsutil config

to set access credentials

For AWS, in cloudmesh.yaml be sure to set the following values:

	cloudmesh.storage.aws.credentials.access_key_id: “AKIAxxxxxxxxxxxxxxx”

	cloudmesh.storage.aws.credentials.secret_access_key:“Hxkhxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”

	cloudmesh.storage.aws.credentials.region: us-east-1

2.3.1.6 Usage

Usage:
 storagelifecycle put SERVICE STORAGE_BUCKET_NAME (--expiry_in_days=NUM_DAYS | --lifecycle_config FILE)
 storagelifecycle get SERVICE STORAGE_BUCKET_NAME
 storagelifecycle delete SERVICE STORAGE_BUCKET_NAME

Options:
 --expiry_in_days=NUM_DAYS Days until objects in bucket are removed
 --lifecycle_config FILE File containing storage lifecycle rules
 for bucket or objects in bucket

Arguments:
 SERVICE Name of the cloud service provider (i.e.
 aws, gcp, azure)
 STORAGE_BUCKET_NAME Id of the cloud service provider bucket
 NUM_DAYS NUMBER OF DAYS

Description:

 Manage cloud service provider objects so that they are stored
 cost-effectively throughout their lifecycle.
 AWS and GCP are currently supported.

 storagelifecycle put SERVICE STORAGE_BUCKET_NAME \
 (--expiry_in_days=NUM_DAYS | --lifecycle_config FILE)
 Creates a new lifecycle configuration for the
 bucket or replaces an existing lifecycle configuration.

 storagelifecycle delete SERVICE STORAGE_BUCKET_NAME
 Removes all the lifecycle configuration rules in the
 lifecycle subresource associated with the (STORAGE_ID).

 storagelifecycle get SERVICE STORAGE_BUCKET_NAME
 Returns the lifecycle configuration information set on
 the bucket.

Example:

 storagelifecycle put "aws" "cloudmesh-bucket-001" \
 --expiry_in_days=90

 storagelifecycle put "aws" "cloudmesh-bucket-001" \
 --lifecycle_config="C:\\mydir\\aws_lifecycle_config.json"

 storagelifecycle get "aws" "cloudmesh-bucket-001"

 storagelifecycle delete "aws" "cloudmesh-bucket-001"

 For advanced storage lifecycle configurations, use the --lifecycle_config FILE option:

 Example Google lifecycle config:
 {
 "lifecycle":{
 "rule":[
 {
 "action":{
 "type":"SetStorageClass",
 "storageClass":"NEARLINE"
 },
 "condition":{
 "age":365,
 "matchesStorageClass":[
 "MULTI_REGIONAL",
 "STANDARD",
 "DURABLE_REDUCED_AVAILABILITY"
]
 }
 }
]
 }
 }

 Example AWS lifecycle config:
 {
 "Rules":[
 {
 "Filter":{
 "Prefix":"documents/"
 },
 "Status":"Enabled",
 "Transitions":[
 {
 "Days":365,
 "StorageClass":"GLACIER"
 }
],
 "Expiration":{
 "Days":3650
 },
 "ID":"ExampleRule"
 }
]
 }

2.3.1.7 Testing with Pytest

cd cloudmesh-storagelifecycle
pytest tests/ -v -s --durations=10

or

pytest tests/test_aws.py -v -s --durations=10
pytest tests/test_gcp.py -v -s --durations=10

2.3.1.8 Supporting Documentation:

	https://docs.aws.amazon.com/AmazonS3/latest/dev/intro-lifecycle-rules.html

	https://cloud.google.com/storage/docs/managing-lifecycles

	https://www.visualcapitalist.com/how-much-data-is-generated-each-day/

2.3.2 Cloudmesh Frugal ☁️

🅾️ benchmark results or links to them are missing

Brian Funk, brfunk@iu.edu, fa19-516-166

	Contributors

	Insights

	Code Repository

2.3.2.1 Usage

Usage:
 frugal list [--benchmark] [--refresh] [--order=ORDER] [--size=SIZE] [--cloud=CLOUD]
 frugal boot [--refresh] [--order=ORDER] [--cloud=CLOUD]
 frugal benchmark

Arguments:
 ORDER sorting hierarchy, either price, cores, or
 memory. DEFAULT = price
 SIZE number of results to be printed to the
 console. DEFAULT = 25, and can be changed with
 cms set frugal.size = SIZE
 CLOUD Limits the frugal method to a specific cloud
 instead of all supported providers

Options:
 --refresh forces a refresh on all entries for
 all supported providers
 --order=ORDER sets the sorting on the results list
 --size=SIZE sets the number of results returned
 to the console
 --benchmark prints the benchmark results instead
 of flavors

Description:
 frugal list
 lists cheapest flavors for aws, azure, and gcp
 in a sorted table by default, if --benchmark is
 used then it lists benchmark results stored in
 the db

 frugal boot
 boots the cheapest bootable vm from the frugal
 list.

 frugal benchmark
 executes a benchmarking command on the newest
 available vm on the current cloud

Examples:

 cms frugal list --refresh --order=price --size=150
 cms frugal list --benchmark
 cms frugal boot --order=memory
 cms frugal benchmark

 ...and so on

Tips:
 frugal benchmark will stall the command line after
 the user enters their ssh key. This means the benchmark
 is running

Limitations:

 frugal boot and benchmark only work on implemented providers

2.3.2.2 Notes

2.3.2.2.1 Installation

Cloudmesh frugal can be installed with cloudmesh and the following commands

$ source ~/ENV3/bin/activate
$ mkdir cm
$ cd cm
$ pip install cloudmesh-installer
$ cloudmesh-installer git clone frugal
$ cloudmesh-installer install frugal

2.3.2.3 Abstract

Cloudmesh frugal is a cloudmesh commandline API for comparing the cost of compute for supported compute providers in various regions. It compares price relative to the hardware specifications of the machines, an provide the VM with the best value. It has three core commands which list, boot, and benchmark the cheapest vm. The current support providers are AWS, and Azure with full support, and GCP with list support only.

2.3.2.4 Introduction

Cloudmesh frugal collects pricing information on all of the availble flavors for AWS, GCP, and Azure. Those prices are then compared to the physical specifications of the machine, which are then compared with each other. The core component of frugal is a ranked list of flavors across the three compute providers, sorted by value. From this list, vms can be booted, and then benchmarked.

2.3.2.5 Design

Calling the cloudmesh frugal list command will first check to see if frugal information already exists in the local mongodb. If it is does and the user does not signal for a refresh, then the local information is used. If the information does not exist for a provider or the user signals for a refresh, then the flavor pricing information is pulled and processed into a frugal matrix. The frugal is then saved back to the local mongodb, and then combined with the information of the other providers. It is then sorted, and the final frugal matrix is printed to the console. Calling frugal boot retrieves final table produces in frugal list, but does not print it. Instead it filters the table to the providers that are usuable, and then boots the top ranked vm. Finally frugal benchmark is designed to be used directly after frugal boot, as it uses the current cloud and the most recent vm. It sends a benchmarking file to the vm via scp, runs the benchmark, prints the benchmark times, and then deletes the file.

2.3.2.5.1 Architecture

This is a sketch of the logic flow of cloudmesh frugal list and boot. It is not comprehensive, but it gives a core understanding of how the command works and interacts with the local db and the internet. [image: Very rough architecture/design diagram]

2.3.2.6 Benchmarks

There are three pytest files for frugal, test_01_frugal_list.py, test_02_frugal_boot.py, and test_03_frugal_benchmark. They collectively test frugal list, boot, and benchmark. The results of this benchmark will be linked to once the output file is reduced to a manageable file size

2.3.2.7 References

	Cloudmesh Manual

	Python for Cloud Computing

	Cloud Computing

2.4 SECURITY

2.4.1 Encryption of Cloudmesh Config File Secrets ☁️

Andrew Holland

	repo: fa19-516-144

	email: hollanaa@iu.edu

Project Contributions

	Contributors

	Github Repo Insights

Repositories Impacted

	cloudmesh-cloud

	key.py

	config.py

	encrypt.py: removed here

	test_encryption.py: removed here

	cloudmesh-configuration

	Config.py

	encrypt.py

	test_encryption.py

	cloudmesh.yaml

	cloudmesh-common

	util.py

2.4.1.1 Introduction

The Cloudmesh project does not include the encryption of its secrets within the cloudmesh.yaml file. This introduces major concerns if the yaml file is accidentally shared or if a malicious agent gets access to the local machine. Either of these scenarios would mean the total exposure of all secrets the user added to cloudmesh.

The first major task is creating a series of general tools that can be used to replace the current EncryptFile class. The EncryptFile class only offers encryption using the default name and a few openssl calls. The new suite should be able to provide symmetric and asymmetric encryption, hashing, password collection, key loading, and key verification. These features can all be added by using trusted modules such as python cryptography or ‘pyca’.

The second task involves updating the current cms config encrypt and cms config decrypt commands that can take the new suite’s tools and encrypt the specific attributes that should be kept secret. This will also require introducing a new section to the cloudmesh.yaml file that controls security and some customizable way for users to decide which attributes should be encrypted.

After addressing these tasks Cloudmesh users will be capable of having finer control over the security features of cloudmesh. This may also introduce further security opportunities that could be addressed in the future.

2.4.1.2 Installation and Using Cloudmesh Config Encryption

The installation and process of encryption is described in detail within encryption.rst. This file should be consistent with the Cloudmesh Config File Encryption documentation.

2.4.1.3 Implementation

2.4.1.3.1 Cloudmesh.Security Section

The cloudmesh.security section was added to allow users to control encryption. This section has five noteworthy attributes.

	publickey: The path to the public key used to encrypt the attributes

	privatekey: The path to the private key used to decrypt the attributes This must be the private key-paired with the public key

	secpath: This is the operating system path that will hold keys and nonces

	secrets: A list of regular expressions to select which attributes to encrypt

	exceptions: A list of regular expressions to deny encrypting attributes

2.4.1.3.2 Cloudmesh Tools for Encryption

Cloudmesh now has several classes to handle the foundation of security. All tools are located within encrypt.py

2.4.1.3.2.1 CmsEncryptor

The CmsEncryptor class is a general encryptor tool used for both symmetric and asymmetric encryption schemes. Currently RSA and AES-GCM encryption schemes are the only available schemes for encryption. This is used to take bytes of data and return the encrypted bytes with other data if necessary. This can also be used for full file encryption. Due however note that this particular functionality has not been tested with arbitrarily large file sizes.

2.4.1.3.2.2 CmsHasher

The CmsHasher class is used for hashing techniques. Currently SHA256 and MD5 are supported. Note MD5 is an insecure hashing tool. It should only be used when you are absolutely sure that the data being hashed does not need to be kept secret. The default and recommended hashing tool is SHA256. The Hasher is used hash the attribute dot paths that are encrypted and use the hash as a base file name. MD5 is used in this instance since the security of the secrets does not rely on hiding the path of the attribute that was encrypted.

2.4.1.3.2.3 KeyHandler

The KeyHandler class is responsible for generating, writing, loading, and verifying the encoding and format of a given key file. Some variety of keys and formats are supported. Currently, private keys can have PKCS8 or OpenSSL format and Public keys can have SubjectInfo or OpenSSH formats. Both PEM and SSH encoding is supported. It can support both passwordless and password-protected private key files.

2.4.1.3.3 Encrypting and Decrypting Cloudmesh Attributes

2.4.1.3.3.1 Internal Process for Encryption

	Copy the contents of the config into a secure temporary file If at any time an error occurs the original config file is restored

	The cloudmesh.security.secpath value is queried from the config

	Load the key whose path is referenced in cloudmesh.security.publickey

	For each regular expression, apply it on all paths of the config file

	For each applied path, get the value and hash the full path

	Encrypt the value with CmsEncryptor using AES-GCM

	Take the generated key, generated, nonce, and ciphertext

	Encrypt the nonce and key with CmsEncryptor using RSA

	Store an integer encoding of the ciphertext in the cloudmesh config

	Store the encrypted key and nonce in separate files with hashed base name

	Delete the temporary file

2.4.1.3.3.2 Internal Process for Decryption

	Copy the contents of the config into a secure temporary file If at any time an error occurs the original config file is restored

	Query the config for the value of cloudmesh.security.secpath

	Load the key whose path is referenced in cloudmesh.security.privatekey

	For each regular expression, apply it on all paths of the config file

	For each applied path produce the hash and load the nonce and key

	Decrypt the nonce and key with CmsEncryptor using RSA

	Get the ciphertext from the config down the full path

	Decrypt the ciphertext using the key, and nonce

	Set the path attribute with the plaintext

	Delete the files with hash as base name in the secpath directory

	Delete the temporary file

2.4.1.3.3.3 Key Management

2.4.1.3.3.4 Keys Used in Encryption

There are two keys used for encryption and decryption. The symmetric key which is an AES-256 key that is automatically generated by CmsEncryptor and the private-public RSA key pair generated by the user.

The RSA key should be in PEM format, with 2048 bits. This key could be generated by using the cms key gen pem command.

Since symmetric keys require more computation to crack than asymmetric keys we encrypt the actual data with the AES-GCM cipher. This will produce the ciphertext (which is stored in cloudmesh.yaml), a nonce (one time random data), and an AES key that was used to encrypt the data.

The nonce and key are encrypted with the user’s RSA public key located at the full file path listed within the cloudmesh.security.publickey attribute. Technically, the nonce need not be kept secret, but minimal computational effort is lost by encrypting the data. The encrypted nonce and key are stored within the cloudmesh.security.secpath directory. This is why the cloudmesh config secinit command was required during configuration. The secinit command ensured the directory was created.

2.4.1.3.3.5 Key Generation

Cloudmesh can generate keys using the cms key gen command. This command is integrated with the KeyHandler class. This command can generate PEM and OpenSSH encoded public or private RSA key.

2.4.1.3.3.6 Verify Key Structure and Password

Cloudmesh can verify if a key is password protected and if a key has proper PEM or SSH encoding. This is executed with the cms key gen verify command. The first check is to verify if the key is password protected. The encoding cannot be verified without obtaining the password to decrypt the key. If the encoding is to be checked the --check_pass argument should be utilized.

2.4.1.3.3.7 Reformatting a Keys Structure and Password

Cloudmesh can reformat PEM or SSH encoded keys between each other by using the cloudmesh key reformat command. This command can be useful to retain the original value of a key but to change the formatting for key purposes.

2.4.1.3.3.7.1 Attempt to Automate with SSH-Agent

Original plans included integrating ssh-agent to automatically retrieve passwords for key operations (such as encryption). This goes against the functionality of the SSH-Agent. As referenced in the IETF informational documentation for ssh-agent found here details that the agent should only be used for signing data.

The ssh-agent is used to prove possession of the private key without exposing the private bytes of the key. This is done by generating a public-private key pair and sending the public key to the server. When you attempt to ssh to the server it will request a signature of some random data. When you retrieve the data you request the ssh-agent signs it and this signed data is sent back to the server. Since the signature can be validated by the public key you prove the private key is within your possession. Notice this is different than using the actual key bytes.

To give a practical example of the agent being unable to provide private key bytes we can reference the ssh_agent demo directory. In short, we will use a public-private key pair to encrypt some data. Even if the private key is added to the ssh-agent a password will be prompted. Please read the README within the directory further explanation.

2.4.1.4 Limitations

2.4.1.4.1 Non-Authenticated Data

Initially the CMS Encryptor utilized AES-GCM Additional Authenticated Data or ‘aad’. The aad is non-secret data that can be paired with encryption to guarantee the integrity of some other data. Originally the CmsEncryptor used the cloudmesh version number as the aad. This introduced some instability when encrypting large data sets required reverting the config file. Thus it was removed. Since it was removed the Encryptor is not utilizing a powerful tool granted by AES-GCM.

2.4.1.4.2 Password Management

Passwords on private keys must be entered manually upon each request to decrypt the data. No password management integration currently exists to ensure passwords are only queried upon the first call. Password manager cli may be possible solution (albeit exploitable via side-channel attacks, and potentially extractable from local users). One possible tool to integrate may be keepassXC-cli

There are several password managements tools that have been developed over the last decade but not all are useful for cloudmesh. kpcli and kedpm are two historical password manager, but they lack modern development. Keepass2-cli has more active development but lacks some of the intuitive command line features that keepassXC-cli has. the gopass password manager seems useful for the intended purposes of cloudmesh, but it is still in early development.

2.4.1.4.3 Referencing Encrypted Data

The current implementation of configuration encryption is intended to secure at-rest configuration secrets. This means all of the attributes are encrypted or none of them are. This limits the practicality of utilizing the encrypt and decrypt commands.

To make config encryption more useful some functionality to query encrypted data should be introduced. This extension should not require extensive effort since the keys are stored and gathered in a general manner.

One approach may be to decrypt the config within the users shell instance and store the private key in memory. Whenever an encrypted value is queried you could decrypt it, return the value, then re-encrypt the value.

This approach should be taken with care to not expose the key contents. This would also mean the key could be extracted from side-channel attacks.

Another approach would be to have some password manager store the keys. When a session is started have them use the password to the password db. Then when a value is requested, query the db for the cipher value, decrypt the value and return it. This has the benefit of not requiring re-encryption, but is vulnerable to side-channel attacks and requires extensive thought on how an attacker could acquire the keys.

2.4.1.4.4 Encrypting Arbitrarily Large Files

The EncryptFile class was replaced by the CmsEncryptor and KeyHandler classes. The CmsEncryptor.encrypt_file() function is responsible for encrypting the contents of any given file path. This function has undergone testing files but not with large file sizes. Namely it has not tested file sizes that are larger than the machines memory limits. To ensure the functionality is correct file sizes of 50GB+ should be encrypted and decrypted to ensure that data is not lost or unencrypted.

2.4.1.4.5 Matching More Cases than Intended with Cloudmesh.Security.Secrets Section

By the definition of python re the . symbol matches any single character. Under most practical circumstance this should match on a literal . character since all paths in the cloudmesh.yaml config are presented as dotpaths. Due to these design choices it is technically possible for the expressions to encrypt more values than intended.

Example) regexp = .*security.secrets.foo

Let us have the following dotpaths

security.secrets.foo:bar
security.secretsXfoo:baz

Both bar and baz will be encrypted since the re . can match on both the literal . and the character X. This should only bring minimal additional overhead on the occasion it occur. This could be corrected by defining more specific syntax when adding secrets and exceptions or by checking if the given expression for cms config security add ... is regexp at all.

2.4.1.5 References

2.4.1.5.1 Password Managers

	kpcli

	gopass

	kedpm

	keepass2 cli

2.4.1.6 Acknowledgments

Gregor von Laszewsk, for assistance in writing the config encryption page

2.4.2 Group Key Management for Cloudmesh ☁️

🅾️ needs to be completed

Nayeem Baig

	email: nayeemullahbaig.93@gmail.com

	repo: fa19-516-172

	Contributors

	Forked Keygroup Branch

2.4.2.1 Introduction

In the cloud we need to give access to VMs to multiple users.

The management of keys need to be automated and integrated with mongoDB.

Cloudmesh is missing functionality to easily add keys and control the access

policies related to key management. Functionality to utilize mongo DB have

already been developed for the Security Rules and Security Groups functions.

We can add Key Groups that are defined by both the related cloud provider and

collection of related keys to fine tune access control for all connected machines.

After addressing the completion of this elected task the students ahs the opportunity to work on additional other cloud security aspects of his chosing if desired.

2.4.2.2 Implementation

2.4.2.2.0.1 Automating Key Management

2.4.2.3 Tasks

2.4.2.3.1 CMS Key Command

Status: Completed

Last Update: Implemented cms key add NAME --source=FILE_PATH

2.4.2.3.2 CMS KeyGroup Command

Status: In Progress

Last Update: Only uploading keys to VMs is left

2.4.2.4 Progress

	Following commands have been implemented

	cms key add –source=FILENAME

	cms key group list

	cms key group add –group=abc –name="laszewsk_git_[0,,1,2]"

	cms key group delete –group=abc –name="laszewsk_git_[0,,1,2]"

	cms key group export –group=abc,klm –file=FILENAME

2.4.3 Task left

	cms key group upload –group=NAME ip=…. –authorized_keys

2.4.4 Usage

	cms key add –source=FILENAME

cms key add NAME --source=FILE_PATH

(ENV3) nayeem@workspace:~$ cms key add --source=/home/nayeem/test/id_rsa2.pub ids2
Cloudmesh Database Update |################################| 1/1
(ENV3) nayeem@workspace:~$ cms key list
+------------------+---------+---+------------------+
| Name | Type | Fingerprint | Comment |
+------------------+---------+---+------------------+
nayeemb	ssh-rsa	12:fe:dc:eb:48:4b:fd:d6:d2:60:1c:1e:a1:7a:a6:df	nayeem@workspace
TEST	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
idRSA1	ssh-rsa	3d:74:85:e7:2c:e6:26:48:a8:74:c6:fd:b8:de:23:3b	nayeem@workspace
IDRSA2	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
nayeembaig_git_0	ssh-rsa	74:cd:23:64:1b:7f:98:fc:aa:47:f3:b6:46:1f:74:a2	nayeembaig_git_0
nayeembaig_git_1	ssh-rsa	98:f4:89:23:57:8b:81:f4:3c:00:a6:23:2f:ed:07:47	nayeembaig_git_1
nayeembaig_git_2	ssh-rsa	12:fe:dc:eb:48:4b:fd:d6:d2:60:1c:1e:a1:7a:a6:df	nayeembaig_git_2
testidrsa	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
nayeembaig_git	ssh-rsa	3d:74:85:e7:2c:e6:26:48:a8:74:c6:fd:b8:de:23:3b	nayeem@workspace
testing	ssh-rsa	3d:74:85:e7:2c:e6:26:48:a8:74:c6:fd:b8:de:23:3b	nayeem@workspace
ids2	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
+------------------+---------+---+------------------+

	cms key group add –group=GROUPNAME NAME

(ENV3) nayeem@workspace:~$ cms key group add --group=testGroup6 ids2
Cloudmesh Database Update |################################| 1/1
(ENV3) nayeem@workspace:~$ cms key group list
+------------------+---------+---+------------------+
| Name | Type | Fingerprint | Comment |
+------------------+---------+---+------------------+
nayeemb	ssh-rsa	12:fe:dc:eb:48:4b:fd:d6:d2:60:1c:1e:a1:7a:a6:df	nayeem@workspace
TEST	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
idRSA1	ssh-rsa	3d:74:85:e7:2c:e6:26:48:a8:74:c6:fd:b8:de:23:3b	nayeem@workspace
IDRSA2	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
nayeembaig_git_0	ssh-rsa	74:cd:23:64:1b:7f:98:fc:aa:47:f3:b6:46:1f:74:a2	nayeembaig_git_0
nayeembaig_git_1	ssh-rsa	98:f4:89:23:57:8b:81:f4:3c:00:a6:23:2f:ed:07:47	nayeembaig_git_1
nayeembaig_git_2	ssh-rsa	12:fe:dc:eb:48:4b:fd:d6:d2:60:1c:1e:a1:7a:a6:df	nayeembaig_git_2
testidrsa	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
nayeembaig_git	ssh-rsa	3d:74:85:e7:2c:e6:26:48:a8:74:c6:fd:b8:de:23:3b	nayeem@workspace
testing	ssh-rsa	3d:74:85:e7:2c:e6:26:48:a8:74:c6:fd:b8:de:23:3b	nayeem@workspace
ids2	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
+------------------+---------+---+------------------+			
+------------+--+			
Name	Keys		
+------------+--+			
testGroup6	['nayeembaig_git_0', 'lmo', 'nayeemb',		
	'nayeembaig_git_2', 'TEST', 'ids2',		
	'nayeembaig_git_1', 'testidrsa']		
testGroup7	['nayeemb', 'lmo']		
testGroup	['nayeembaig_git_1', 'idRSA1', 'TEST']		
testGroup1	['nayeembaig_git_1', 'TEST', 'idRSA1']		
+------------+--+

	cms key group list

(ENV3) nayeem@workspace:~$ cms key group list
+------------------+---------+---+------------------+
| Name | Type | Fingerprint | Comment |
+------------------+---------+---+------------------+
nayeemb	ssh-rsa	12:fe:dc:eb:48:4b:fd:d6:d2:60:1c:1e:a1:7a:a6:df	nayeem@workspace
TEST	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
idRSA1	ssh-rsa	3d:74:85:e7:2c:e6:26:48:a8:74:c6:fd:b8:de:23:3b	nayeem@workspace
IDRSA2	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
nayeembaig_git_0	ssh-rsa	74:cd:23:64:1b:7f:98:fc:aa:47:f3:b6:46:1f:74:a2	nayeembaig_git_0
nayeembaig_git_1	ssh-rsa	98:f4:89:23:57:8b:81:f4:3c:00:a6:23:2f:ed:07:47	nayeembaig_git_1
nayeembaig_git_2	ssh-rsa	12:fe:dc:eb:48:4b:fd:d6:d2:60:1c:1e:a1:7a:a6:df	nayeembaig_git_2
testidrsa	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
nayeembaig_git	ssh-rsa	3d:74:85:e7:2c:e6:26:48:a8:74:c6:fd:b8:de:23:3b	nayeem@workspace
testing	ssh-rsa	3d:74:85:e7:2c:e6:26:48:a8:74:c6:fd:b8:de:23:3b	nayeem@workspace
ids2	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
+------------------+---------+---+------------------+			
+------------+--+			
Name	Keys		
+------------+--+			
testGroup6	['nayeembaig_git_0', 'lmo', 'nayeemb',		
	'nayeembaig_git_2', 'TEST', 'ids2',		
	'nayeembaig_git_1', 'testidrsa']		
testGroup7	['nayeemb', 'lmo']		
testGroup	['nayeembaig_git_1', 'idRSA1', 'TEST']		
testGroup1	['nayeembaig_git_1', 'TEST', 'idRSA1']		
+------------+--+

	cms key group delete –group=GROUPNAME NAME

(ENV3) nayeem@workspace:~$ cms key group delete --group=testGroup6 ids2
names: ids2
Cloudmesh Database Update |################################| 1/1
(ENV3) nayeem@workspace:~$ cms key group list
+------------------+---------+---+------------------+
| Name | Type | Fingerprint | Comment |
+------------------+---------+---+------------------+
nayeemb	ssh-rsa	12:fe:dc:eb:48:4b:fd:d6:d2:60:1c:1e:a1:7a:a6:df	nayeem@workspace
TEST	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
idRSA1	ssh-rsa	3d:74:85:e7:2c:e6:26:48:a8:74:c6:fd:b8:de:23:3b	nayeem@workspace
IDRSA2	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
nayeembaig_git_0	ssh-rsa	74:cd:23:64:1b:7f:98:fc:aa:47:f3:b6:46:1f:74:a2	nayeembaig_git_0
nayeembaig_git_1	ssh-rsa	98:f4:89:23:57:8b:81:f4:3c:00:a6:23:2f:ed:07:47	nayeembaig_git_1
nayeembaig_git_2	ssh-rsa	12:fe:dc:eb:48:4b:fd:d6:d2:60:1c:1e:a1:7a:a6:df	nayeembaig_git_2
testidrsa	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
nayeembaig_git	ssh-rsa	3d:74:85:e7:2c:e6:26:48:a8:74:c6:fd:b8:de:23:3b	nayeem@workspace
testing	ssh-rsa	3d:74:85:e7:2c:e6:26:48:a8:74:c6:fd:b8:de:23:3b	nayeem@workspace
ids2	ssh-rsa	7b:b0:ba:7b:f1:54:df:87:5c:ff:42:41:91:84:bc:98	nayeem@workspace
+------------------+---------+---+------------------+			
+------------+--+			
Name	Keys		
+------------+--+			
testGroup6	['testidrsa', 'nayeembaig_git_0', 'lmo', 'TEST',		
	'nayeembaig_git_2', 'nayeemb',		
	'nayeembaig_git_1']		
testGroup7	['nayeemb', 'lmo']		
testGroup	['nayeembaig_git_1', 'idRSA1', 'TEST']		
testGroup1	['nayeembaig_git_1', 'TEST', 'idRSA1']		
+------------+--+

	cms key group export –group=GROUPNAME –file=FILENAME

(ENV3) nayeem@workspace:~$ cms key group export --group=testGroup6 --file=/home/nayeem/export.txt
(ENV3) nayeem@workspace:~$ cat /home/nayeem/export.txt

ssh-rsa hidden on purpose nayeem@workspace
ssh-rsa hidden on purpose
ssh-rsa hidden on purpose
ssh-rsa hidden on purpose
ssh-rsa hidden on purpose
ssh-rsa hidden on purpose nayeem@workspace

2.4.5 References

	https://github.com/cloudmesh/cloudmesh-cloud

2.5 CLUSTER

2.5.1 Federated Kubernetes Clusters With Raspberry Pi ☁️

Sub Raizada and Gregor von Laszewski, fa19-516-148

laszewski@gmail.com

Insights

🅾️ please report on progress on the kubernetes cluster

do you have a command such as

cms kubernetes deploy … ?

2.5.1.1 Abstract

2.5.1.2 Introduction

2.5.1.3 Related Work

2.5.1.4 Architecture

We leverage or improve https://github.com/cloudmesh/cm-burn

Our goal is to craete and contrast the creation of Federated kubernetes clusters. We have different models

	The clusters are owned by a single user

	The clusters are owned by multiple users

Goal is to create a federation of them. In each case the fedaration can be achieved in one of two ways.

	consider a big kubernetes cluster that integrates all resources

	consider a cluster of kubernetes clusters

This requires some investigation into kubernetes

Some images are shown in cm-burn that we may want to copy here.

2.5.1.5 Technologies used

	cloudmesh cm-burn

	cloudmesh-inventory

	Kubernetes

	Docker

2.5.1.6 Benchmark and Evaluation

2.5.1.7 Conclusion

2.5.1.8 Other documentation files

	sdcard-setup.md contains documentation on cm-pi-burn and how the Pi images are modified/initialized. Also refer to the cm-pi-burn.md file in the cm-burn repo.

	pi-setup.md contains documentation on post-burn configuration that must be done after a Pi is booted up for the first time.

	docker.md contains documentation on creating the Docker image used for testing.

2.5.2 Hadoop Clusters With Raspberry Pi ☁️

Daivik Uggehalli Dayanand, fa19-516-158

Akshay Kowshik, fa19-516-150

Insights: https://github.com/cloudmesh-community/fa19-516-158/graphs/contributors

Code Directory:

	https://github.com/cloudmesh/cm-burn/blob/master/cmburn/

	https://github.com/cloudmesh/cloudmesh-inventory/tree/master/cloudmesh/host

	https://github.com/cloudmesh-community/fa19-516-158/tree/master/project

The last 2 links of the code needs to be verified and is not yet fully implemented

Manual:

	https://github.com/cloudmesh/cloudmesh_pi_burn/blob/master/cm-pi-burn.md

2.5.2.1 Introduction

Majority of the data in today’s world has been stored in HDFS. HDFS stands for Hadoop Distributed Storage System. The Raspberry Pi provides to the community a cheap platform with the ability to expose Linux and other operating systems to the masses. Due to its cost point, it is easy to buy a PI and experiment with it. As such this platform has been ideal to lower the entry barrier to advanced computing from the university level to highschool, middle school and even elementary school. However, the PI has also been used by universities and even national labs. Due to its availability and its convenient accessibility, it has become a staple of our educational pipeline. Due to its price point the PI can also be used to build cheap clusters putting forward a hardware platform ideal for experimenting with issues such as networking and cluster management as an educational tool. Many such efforts exist to use a PI as a cluster environment.

So it would be a good idea if we could somehow turn such a platform more powerful by deploying latest technologies such as Hadoop and Spark on it. Multi cluster Raspberry Pi, where one node can act as the master node and other nodes act as slaves and the master might be able to control the slaves.

2.5.2.2 Abstract

Deployment of Hadoop on Raspberry Pi Clusters which involves:

	Using CM-BURN command to burn multiple SD cards at once

	Creating a cluster with as many nodes as we have SD cards for

2.5.2.3 Architecture

	A master node maintains knowledge about the distributed file system and schedules resources allocation. It will host two daemons:

	The NameNode manages the distributed file system and knows where stored data blocks inside the cluster are.

	The ResourceManager manages the YARN jobs and takes care of scheduling and executing processes on worker nodes.

	Worker nodes store the actual data and provide processing power to run the jobs and will host two daemons:

	The DataNode manages the physical data stored on the node; it is named, NameNode.

	The NodeManager manages execution of tasks on the node.

2.5.2.4 Technologies used

	cm-burn

	Python

	HDFS

	Hadoop

2.5.2.5 Implementation

The implemenation consists of the following steps:

	Buring the raspian image on the SD card

	Setting Static IP address on th SD card

	Setting HostNames on the SD card

	Implementing SSH so that we can connect from one PI to the other

	Downloading Hadoop on the master node

	Copying the Hadoop files from the master node across the cluster of nodes using SCP

	Changing the Configuration Files of Hadoop to set the replication factor, NameNode location

The first 3 major steps are already implemented using cm-pi-burn. Please go through this cm-pi-burn for the implementation of the first 3 steps. After the buring of sd cards using cm-pi-burn command, the first 3 steps will automatically be done by it. We will walk through the steps starting from the 4th as to what we have practically tried on a 5 node cluster and it works good. We have used bash scipt for our implementation which could be replaced by python script by leveraging the use of host command in the future.

After the first 3 steps which is performed using cm-pi-burn, each sd card would have a raspbian lite image on it, static ip address and a host name. Now we have to set up SSH to that we can connect from one Pi in the cluster to the other PI.

2.5.2.5.0.1 Set password, Enable SSH and Reboot Pi

To enable ssh on each Pi, we need to follow these instructions

	Launch Raspberry Pi Configuration from the Preferences menu

	Navigate to the Interfaces tab

	Select Enabled next to SSH

	Click OK

Alternatively, raspi-config can be used in the terminal:

	Enter sudo raspi-config in a terminal window

	Select Interfacing Options

	Navigate to and select SSH

	Choose Yes

	Select Ok

	Choose Finish

Alternatively we can also use the following commands:

sudo systemctl enable ssh
sudo systemctl start ssh

2.5.2.5.0.2 Simplifying SSH

SSH can be done using the public/private keys.

⭕ this is too complex we just use id_ras.pub

ssh-keygen –t ed25519

This will generate a public and private key pair within the directory ~/.ssh/ which can be used to securely ssh without entering a password. One of these files will be called id_ed25519, this is the private key. The other, id_ed25519.pub is the public key. The public key is used to communicate with the other Pis, and the private key never leaves its host machine and should never be moved or copied to any other device.

To overcome this problem each public key needs to be concatenated to the ~/.ssh/authorized_keys file on every other pi.

On all other Pis run the following command:

$ cat ~/.ssh/id_ed25519.pub | ssh pi@192.168.0.101 'cat >> .ssh/authorized_keys'

This concatenates Pi #2’s public key file to Pi #1’s list of authorized keys, giving Pi #2 permission to ssh into Pi #1 without a password. We should also do this for Pi #1, so that when we copy the completed authorized_keys file to the other Pis, they all have permission to ssh into Pi #1, as well(assuming that Pi1 acts as the master node).

$ cat .ssh/id_ed25519.pub >> .ssh/authorized_keys

Once this is done, as well as the previous section, ssh-ing is as easy as:

$ssh pi1

Here again please note that pi1 is the hostname, if you have set your hostname as red01 then it automatically becomes ssh red01 and so on

To replicate the passwordless ssh across all Pis, simply copy the two files mentioned above from Pi #1 to each other Pi using scp

$ scp ~/.ssh/authorized_keys piX:~/.ssh/authorized_keys
$ scp ~/.ssh/config piX:~/.ssh/config

This process can be tedious and we can just use id_rsa.pub also. Furthermore we can write a scp or rsync function in python which does the above task in a much more simpler manner(we havent tried this though).

2.5.2.5.0.3 Copying the files from one pi across the entire cluster

function clusterscp {
 for pi in $(otherpis); do
 cat $1 | ssh $pi "sudo tee $1" > /dev/null 2>&1
 done
}

we have added some more useful function too such as rebooting the entire cluster,shutdown the cluster.

function clusterreboot {
 clustercmd sudo shutdown -r now
}

function clustershutdown {
 clustercmd sudo shutdown now
}

The above bash scripts need to be added to the the ~/.bashrc file of any particular Pi. Now all the functions defined in the ~/.bashrc file can be copied across all the other nodes by using:

 source ~/.bashrc && clusterscp ~/.bashrc

2.5.2.5.0.4 Hadoop installation

Installing Hadoop 3.2.0 into a directory called /opt/hadoop

wget "https://archive.apache.org/dist/hadoop/common/hadoop-3.2.0/hadoop-3.2.0.tar.gz"
tar -xzf hadoop-3.2.0.tar.gz
sudo mv ~/hadoop-3.2.0 /opt/hadoop

We can use clusterscp function to copy the same file across all the cluster so that hadoop is installed across all the nodes.

This may be needed to be added to .bashrc of the master node

export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-armhf
export HADOOP_HOME=/opt/hadoop
export SPARK_HOME=/opt/spark
export PATH=$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$SPARK_HOME/bin:$PATH
export HADOOP_HOME_WARN_SUPRESS=1

2.5.2.5.0.5 Set JAVA_HOME

	To find Java path

update-alternatives --display java

	Remove /bin/java - On Debian, the link is

/usr/lib/jvm/java-11-openjdk-armhf/bin/java, so JAVA_HOME should be /usr/lib/jvm/java-11-openjdk-armhf.

	Update the hadoop-env.sh under ~/hadoop/etc/hadoop as:

export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-armhf

After the above step change the permissions on the directory using:

$ sudo chown pi:pi -R /opt/hadoop

You can also verify if hadoop has been installed correctly by checking the version

$ cd && hadoop version | grep Hadoop

The output will be

Hadoop 3.2.0

2.5.2.5.0.6 HDFS

To get the Hadoop Distributed File System (HDFS) up and running, modify the following configuration files which are under /opt/hadoop/etc/hadoop.

	Update core-site.xml file to set the NameNode location to Master on port 9000:

<configuration>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://pi1:9000</value>
 </property>
</configuration>

	To set path for HFDS, edit hdfs-site.xml. dfs.replication, indicates how many times data is replicated in the cluster. Set 4 to have all the data duplicated four nodes. Don’t enter a value higher than the actual number of worker nodes.

<configuration>
 <property>
 <name>dfs.datanode.data.dir</name>
 <value>file:///opt/hadoop_tmp/hdfs/datanode</value>
 </property>
 <property>
 <name>dfs.namenode.name.dir</name>
 <value>file:///opt/hadoop_tmp/hdfs/namenode</value>
 </property>
 <property>
 <name>dfs.replication</name>
 <value>4</value>
 </property>
</configuration>

	To set Yarn as Job Scheduler, edit mapred-site.xml, setting YARN as the default framework for MapReduce operations.

<configuration>
 <property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 </property>
 <property>
 <name>yarn.app.mapreduce.am.resource.mb</name>
 <value>256</value>
 </property>
 <property>
 <name>mapreduce.map.memory.mb</name>
 <value>128</value>
 </property>
 <property>
 <name>mapreduce.reduce.memory.mb</name>
 <value>128</value>
 </property>
</configuration>

	Edit yarn-site.xml, which contains the configuration options for YARN.

<configuration>
 <property>
 <name>yarn.acl.enable</name>
 <value>0</value>
 </property>
 <property>
 <name>yarn.resourcemanager.hostname</name>
 <value>pi1</value>
 </property>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
 <property>
 <name>yarn.nodemanager.auxservices.mapreduce.shuffle.class</name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>
 <property>
 <name>yarn.nodemanager.resource.memory-mb</name>
 <value>900</value>
 </property>
 <property>
 <name>yarn.scheduler.maximum-allocation-mb</name>
 <value>900</value>
 </property>
 <property>
 <name>yarn.scheduler.minimum-allocation-mb</name>
 <value>64</value>
 </property>
 <property>
 <name>yarn.nodemanager.vmem-check-enabled</name>
 <value>false</value>
 </property>
</configuration>

2.5.2.5.0.7 To copy the files in /opt/hadoop to all Pis

Add the following function to the .bashrc file of the master node

function copyconfig {
for pi in $(otherpis); do rsync -avxP $HADOOP_HOME $pi:/opt; done
}

On the master node, run source ~/.bashrc && copyconfig which copies Hadoop files from the master Pi node to all other Pis in the cluster.

2.5.2.5.0.8 Format HDFS

$ hdfs namenode -format -force

2.5.2.5.0.9 Boot HDFS

	Start HDFS by running the following script from master node:

$ start dfs.sh

	Start YARN with the following script from master node:

$ start yarn.sh

2.5.2.5.0.10 Test HDFS

Check HDFS is working by creating a temporary directory

$ hadoop fs -mkdir /tmp
$ hadoop fs -ls /
$ jps

2.5.2.5.0.11 Spark installation

$ wget "https://archive.apache.org/dist/spark/spark-2.4.3/spark-2.4.3-bin-hadoop2.7.tgz"
$ tar -xzf spark-2.4.3-bin-hadoop2.7.tgz
$ sudo mv ~/spark-2.4.3-bin-hadoop2.7 /opt/spark

We can use clustercp function to copy the same file across all the cluster so that hadoop is installed across all the nodes

After the above step change the permissions on the directory using:

$ sudo chown pi:pi -R /opt/spark

Add the following 2 environment variables to the .bashrc file:

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export LD_LIBRARY_PATH=$HADOOP_HOME/lib/native:$LD_LIBRARY_PATH

Create the Spark configuration file and add the following lines at the end of the config file:

$ cd $SPARK_HOME/conf
$ sudo mv spark-defaults.conf.template spark-defaults.conf

spark.master yarn
spark.driver.memory 465m
spark.yarn.am.memory 356m
spark.executor.memory 465m
spark.executor.cores 4

You can also verify if hadoop has been installed correctly by checking the version

$ cd && spark version | grep spark

The output will be as follows

... version 2.4.3 ... Using Scala version 2.11.12 ...

2.5.2.5.0.12 Test Hadoop and Spark working together

$ hadoop fs -put $SPARK_HOME/README.md /

2.5.2.5.0.13 Versions of Hadoop and Spark

$ cd && hadoop version | grep Hadoop
$ cd && spark-shell --version

2.5.2.5.0.14 Test if Spark works on Pi

spark-shell opens the scala> command line

scala> object HelloWorld {
 | def main(args: Array[String]): Unit = {
 | println("Hello, world!")
 | }
 | }
defined module HelloWorld

scala> HelloWorld.main(Array())

Hello, world! # Output displayed

scala>:q
>

2.5.2.6 Benchmarks

The benchmarks for our project was to record the time it takes normally to burn a single SD card and do all the setup part versus the time it takes to burn one SD card using cm-burn automatically with Static IP and hostname set to it. Any cm-pi-burn help commands can be used with a -v flag along with to display the results along with the timings. For eg cm-pi-burn [-v] create [–image=IMAGE] [–device=DEVICE][–hostname=HOSTNAME][–ipaddr=IP][–sshkey=KEY][–blocksize=BLOCKSIZE][–dryrun] will display the results along with the time it takes to burn an image along with Ip address and hostname set along with it.

The results can be summarised as follows:

Manual: 8-9 minutes to burn one SD card and set up a static IP and hostname to it cm-pi-burn : 420 seconds(6 minutes) to burn 2 SD cards

cm-pi-burn turns out to be very much efficient as compared to the Naive approach

2.5.2.7 Acknowledgements

We would like to thank Professor Gregor von Laszewski for his helpful contributions throughout the project in coding, as well as suggestions on how to do better. I would also like to thank Mr. Niranda Perera, for helping me with the project whenever I had issues.

2.5.2.8 References

	https://raspberrytips.com/install-raspbian-raspberry-pi/

	https://raspberrytips.com/raspberry-pi-cluster/

	https://www.raspberrypi.org/documentation/remote-access/ip-address.md

	https://dqydj.com/raspberry-pi-hadoop-cluster-apache-spark-yarn/

	https://www.mocomakers.com/building-a-raspberry-pi-cluster-with-apache-spark/

	https://tekmarathon.com/2017/02/16/hadoop-and-spark-installation-on-raspberry-pi-3-cluster-part-4/amp/

	https://medium.com/@glmdev/building-a-raspberry-pi-cluster-784f0df9afbd

	https://dev.to/awwsmm/building-a-raspberry-pi-hadoop-spark-cluster-8b2

	https://www.linode.com/docs/databases/hadoop/how-to-install-and-set-up-hadoop-cluster/

	https://www.linode.com/docs/databases/hadoop/install-configure-run-spark-on-top-of-hadoop-yarn-cluster/

2.5.3 Spark Cluster Management Abstraction Layer ☁️

	Anish Mirjankar fa19-516-153

	Siddhesh Mirjankar fa19-516-164

	Gregor von Laszewski

	Insights: https://github.com/cloudmesh-community/fa19-516-153/graphs/contributors

🅾️ what is progress

🅾️ use proper markdown

🅾️ remove all html code and use proper markdown

🅾️ all most hyperlinks are not working

🅾️ we can not review your project dud to the trivial markdown errors. please review your document in the epub not in github we only look at the epub

2.5.3.1 Introduction

In various enterprise data pipelines, there is a lack of multi-cloud architecture, often due to services like Spark being natively integrated into clusters such as AWS Elastic MapReduce ???, Azure ???, Google ???, or Oracle ???, as well as locally managed traditional clusters. These data pipelines can benefit from a provider-agnostic solution that will encompass all their available options, rather than forcing them to choose a cloud platform over another. This can be especially beneficial to data teams that require dynamic storage solutions and want the flexibility to move between cloud platforms with ease. We will leverage the convenient multi-cloud interfaces provided by Cloudmesh ???.

🅾️ it is unclear why the use of native cluster is bad … maybe it is not bad, but its good. maybe its just another way … Motivation for project not yet fully clarified.

2.5.3.2 Cloudmesh

We use cloudmesh whic provides the following benefical features:

	Support for multicloud VM management on AWS, Azure, Google. Oracle, OpenStack.

	Support for containers just the same way VMs are supported (this has not been leveraged yet in this activity).

	Support for bookkeeping VM’s and containers in a database

	Support for bookkeeping of an inventory of services

	ability to distribute a default configuration file that allows easy authentication and selection of default images and VM sizes

	Availability of a sophisticated command shell with plugins allowing us to add solution specific commands in minutes

Together these features provide a very easy integration solution for deploying any cluster. However, we will focus here on the deployment of hadoop and spark clusters. The result will be an easy to use command:

$ cms cluster --name=mycluster --deploy=host[01-10] --service=hadoop
$ cms cluster --name=mycluster --deploy=host[01-10] --service=hadoop

To start jobs on such a cluster we do it with

$ cms cluster --name=mycluster --job=wordcount.jar

As we use standrad ssh protocoll, we can inspect and fetch data from a host with

$ cms cluster --name=mycluster get /fileonhost /fileonlocal
$ cms cluster --name=mycluster put /fileonlocal /fileonhost

These commands are easy to implement due to the availability of the database and the cms host command

2.5.3.3 Implementation

2.5.3.3.1 Cluster Abstrations

2.5.3.3.1.1 Inventory

🅾️ describe

2.5.3.3.1.2 Cluster Dict

to represent a cluster in the databbase we simply add the inventory to the cloudmesh database. They are stored in the collection local-cluster. Cloudmesh has a sophisticated easy to use interface to MongoDB allowing augmented functions with a decorator to write into the database as long as they return a dict and contain a cm dict specifying its uniqueness and name. For our cluster we define it as

"cm" : {
 "kind" : "secgroup",
 "name" : "mycluster",
 "cloud" : "local", # the cluster service runs locally
 # in futer version we will rename cloud to
 # either service or location
 # on which cloud the node runs is specified
 # within each node.
 "collection" : "local-secgroup",
 "created" : "2019-12-18 19:57:22.052384",
 "modified" : "2019-12-18 19:57:22.052384"
}
"name" : "mycluster",
"inventory": # details from inventory

We implement a class that allows easy access to this functionality as an API

class Cluster:

def list(name=name):
 return dict

@DatabbaseUpdate
def add(name=name, spec=inventory_spec):
 return dict

@DatabbaseUpdate
def delete(name=name):
 return dict

@DatabbaseUpdate
def status(name=name):
 return dict

@DatabbaseUpdate
def deploy(name=name, spec=deploy_spec):
 return dict

@DatabbaseUpdate
def run(name=name, spec=run_spec):
 return dict

This API can than be used in a cloudmesh Plugin command to make the functionality available from the command line.

2.5.3.4 Proposal 🅾️ we are long past the proposal stage

We will be exploring options for an implementation of Apache Spark that can be managed remotely from a multi-cloud orchestration service. We will abstract the storage and compute initalization within Spark to run parameterized jobs from this service. This will allow the performance bottlenecks of high-performance data transfer to be contained within the cluster itself, rather than a data source.

2.5.3.5 Action

In order to solve this problem, we will be using cloudmesh to coordinate the the vm management on which we install the clusters. This is facilitated also by the following commands available in cloudmesh:

	cms vm boot

	cms inventory

	cms host

In addition we leverage docker images developed by bde2020 …

TODO write if you deverge from them, looks like you need more explanations

The kubernetes image Dockefiles are available in the Repository cluster, and generating a standalone Spark image that will run parameterized jobs, utilizing all of the available multi-cloud options available to the orchestator as well as all of the compute instances. We will also be implementing a testing service that will provide the cluster with the access to compute resources and storage that the jobs will need to run.

🅾️ at no time was mentioned that the images are copied from bde2020 in the report which is not good as that would be plagiarizm if you do not mention it.

2.5.3.6 Solution

The solution is composed of the following workflow:

	creating a cluster with cloudmesh

	interacting with the cluster with the existing inventory the host and the vm commands (and improving them if they do miss features)

	Deploying Hadoop and/or Spark on the cluster

	Starting hadoop or spark jobs on the cluster

	Retrieving results form the jobs

jobs to the cluster. To make it more convenient for the user, we will integrate this workflow into a convenient cloudmesh command. This command will replace the prior work that was conducted in cloudmesh BDRA that deployed hadoop and spark with ansible scripts. i forgot the link … we need to find them in the repos

The command will be called cms cluster and has the following manual page:

TBD

2.5.3.7 Progress

🅾️ please remove this progress section and instead focus on the report writing. For example the report of the first item in your progress is unclear and not even needed for this project. Please drop the use of nomad. Cloudmesh can do this and has been doing thsi before nomad even existed.

	Successfully deployed a Hadoop using a Nomad Cluster

🅾️ if nomad deploys hadoop or just a cluster, please explain, your report is to vague and thus proper feedback is impossible.

	Integrated the deployment with Cloudmesh. Automation is left.

⭕ if you use cloudmesh i do not see why you need nomad.

	Successfully deployed a Hadoop using a Kubernetes Cluster

	Need to integrate and automate the deployment with Cloudmesh

🅾️ please review the host command in cloudmesh-inventory. Ideally we should merge the commands. The reason I could not see what you did is that you did not use proper markdown, so all your links did not work. Thus instead of calling the command in inventory cluster I called it host to simplify the merging. Please remember that merging is part of this review process. We need that functionality only once.

🅾️ the previous comment indicates to me that we discussed the use of nomad before. I also recal that we several times mentioned that we shoudl start vms with cloudmesh and use inventory to manage the nodes.

The following commands will be integrated into the cloudmesh service:

cluster create -n NAME -p PROVIDER [HOSTNAMES]
cluster add -n NAME HOSTNAME
cluster remove -n NAME HOSTNAME

only cloudmesh - bring every machine involved in server down
cluster kill -n NAME

cluster info # find all clusters

find info about given cluster (query the address for
either kubernetes or nomad)
cluster info -n NAME
cluster submit -n NAME JOB
cluster list

Source

2.5.3.7.1 Interaction

We are interacting with the nomad and kubernetes REST APIs to dynamically modify and interact with the cluster/agent configurations while jobs are running. For each interaction, cloudmesh queries the appropriate provider’s API to perform the action to avoid managing a local state.

2.5.3.7.2 Initialization

Using this mechanism, cloudmesh will be able to simultaneously initialize and prepare machines in a cluster while building and deploying the images. The initialization and preparation steps will submit the requested shell script to each machine added to the cluster:

	Kubernetes

	Nomad

We are using the Hadoop Distributed File System (HDFS) of Hadoop v3.2.1 to build docker images of the HDFS services namely Namenode, Datanode, Nodemanager and Resourcemanager. The following are the Dockerfiles for each HDFS service.

	Dockerfile for building a Hadoop Image

	Dockerfile for Namenode

	Shell Script to run Namenode

	Dockerfile for Datanode

	Shell Script to run Datanode

	Dockerfile for Nodemanager

	Shell Script to run Nodemanager

	Dockerfile for Resourcemanager

	Shell Script to run Resourcemanager

	Dockerfile for Historyserver

	Shell Script to run Historyserver

2.5.3.7.3 Deployment

When submitting a job to each of these providers, cloudmesh will first build the requested image:

	Hadoop

	Spark - TODO

	Cloudmesh - if a remote instance is needed

And submit the jobfile to the cluster using the provider’s REST API.

2.5.3.7.4 How to deploy a Kubernetes Cluster?

Step 1: Make sure you are in the cloudmesh_hadoop directory and open Gitbash.

Step 2: Clean up docker

make clean

Step 3: Run all the build commands in the Makefile

make build

Step 4: Run docker-compose to aggregate the output of all the dockerfiles.

docker-compose up

Step 5: Run all the run commands in the Makefile

make run

Step 6: Deploy a Kubernetes Cluster

docker stack deploy --orchestrator kubernetes -c docker-compose.yml cloudmesh_hadoop

Step 7: Remove the Kubernetes Cluster

docker stack rm cloudmesh_hadoop

2.5.3.7.5 Deployment with the help of Cloudmesh

The deployment of VMs in cloudmesh is a one line command:

cms vm boot host[01-10]

To list the vms you can use

cms vm boot host[01-10]

To delete the VMS you can use

cms vm delete host[01-10]

To run commands on the hosts you can use

cms vm ssh host[01-10] command

As you can see cloudmesh has a very convenient mechanism to use user defined hostnames based on a standard configuration that is managed in a configuration file. This abstraction is very easy to understand for users.

Worker nodes and masters can be configured by convention, for example the first node can be the master node. If more detailes service fetures need to be recorded they can be added with the

cloudmesh inventory

command which allows us to easily manage service attribute names in a text yaml configuration file.

2.5.3.7.6 Deployment with the help of Nomad

At one point we used Nomad for this project, but we have to point out that using NOmad for this project is unnecessary as Cloudmesh provides the ability to manage vms and can stroe them in a database and also in an inventory file. These features have been available before Nomad was developed.

However, we also experimented with Nomad. Nomad is a cluster and resource management service primarily used for prototyping and is currently running on the HashiCorp ecosystem (Vagrant, Consul, Terraform, etc.) The primary use-case for nomad is quick protyping and rapid integration of new servers into a docker-based protocol. One strong benefit of nomad is its job parameterization functions - allowing images to be rapidly deployed through the API based on a minimal set of constraints.

Nomad is designed around a single software package which is to be installed on a Debian 9+ VM for optimal use. Nomad Installation

First, a nomad agent will be deployed:

nomad agent -dev # for local development environment OR
nomad agent -client # for cluster client agent OR
nomad agent -server # for cluster server agent

This will ensure that nomad is running and searching for all peers in the network.

If peers do not exist in the nomad network, the user must instruct the nomad agent to look for servers. This can be controlled by the -servers option.

nomad agent -{type} -servers "host1:port,host2:port,..."

Once a nomad agent/cluster is generated, a jobfile must be deployed to this cluster. This can be performed by running the command:

nomad job run JOBFILE_PATH # if the cluster is locally held or the NOMAD_ADDR env variable is set OR
nomad job run -address={addr} JOBFILE_PATH # if the cluster is remotely held

The nomad api can be easily accessed on a custom nomad port or the default port 4646. This api will control all machines connected to the same cluster.

2.5.3.7.6.1 Deploying Hadoop to the Nomad Cluster

The Hadoop ecosystem may be deployed to a nomad cluster using docker-based components. The following images will need to be built and deployed to a container repository or transferred to all nomad servers.

cd ~/cloudmesh/images/hadoop
docker build -t hadoop-base ./base
docker build -t hadoop-namenode ./namenode
docker build -t hadoop-datanode ./datanode
docker build -t hadoop-resourcemanager ./resourcemanager
docker build -t hadoop-nodemanager ./nodemanager
docker build -t hadoop-historyserver ./historyserver
docker build -t hadoop-submit ./submit

Each image will be run in a task in the format:

task "{task_name}" {
 image="{image_name}"
}

2.5.3.8 References

	Kubernetes

	Nomad

	Hadoop

2.6 NIST DATABASE

2.6.1 Abstract Database Management On Multicloud Environments ☁️

Harsha Upadhyay, fa19-516-147

	Contributors

	Insights

	Project Code

🅾️ fix some markdown quote errors 🅾️ remove the progress section and integrate findings into main text 🅾️ list limitations if you have not achieved everything

2.6.1.1 Objective

Abstract database management on Multicloud environments for the NIST Big Data Reference Architecture AWS, Azure.

2.6.1.2 Introduction

We will be providing database abstractions to host arbitrary databases in arbitrary cloud environments. In order to verify that the database provisioning multi cloud environment works, we will be providing a detailed test to manipulate data in database. This will include standard database functionality. The implementation is being conducted as part of API REST services and we will be using following clouds:

	Amazon

	Azure

	and Local DB

We are providing pytest to deploy and execute the verification of the correctness of this services.

2.6.1.3 Motivation

Clouding computing is a market emerging trend. It provides on-demand availability of computer system resources, databases, storage etc. without direct maintenance of the platform by the user of cloud services.

A cloud database is a database which runs on a cloud computing platform. This platform can be private, public or hybrid. When we talk about database, there are two models,

	Traditional cloud model

	Database as a service (DBaaS)

Cloud database as a service is becoming more and more populer these days because of the following main reasons:

	no physical infrastructure needed

	can be scaled quickly and efficiently

	mostly self-managed database with less administrative overhead

Cloud database as a service feature will be used here with the objective of creating a functionality to deploy a database in multiple cloud environment.

Here is a quick reference table giving the listing of database services available from different cloud services provider market leaders,

List of Database Products from Popular Cloud Service Providers

Comparison of Cloud Database

2.6.1.4 Architecture Diagram

2.6.1.5 Technology Detail

	Cloudmesh

Cloudmesh is a multicloud architecture system which offers single architecture for using multiple cloud provides at the same time. Adbvantage of using cloudmesh is that it not only provides a REST based API but also commandline shell which makes easier to switch between clouds using single variable.

	Open API 3.0.2

APIs are sets of requirements that govern how one application can communicate and interact with another. connexion Open API 3 will be used.

	Python Scripting

Python is a most popular programming language which provides vast variety of libraries. Python can be used for developing web, desktop, scientific or any other application. Python will be used as scripting language.

	Cloud databases

AWS RDS SQL Server Express Edition & Azure SQL Database

AWS and Azure are two market leading cloud services provider from Amazon and Microsoft respectively. AWS and Azure both offer number of database services. In project, relation SQL database from these cloud providers are used.

2.6.1.6 Implementation Plan

Abstract Database Management projects provides ability to perform database operations as a service using Open API connexion service and reading specification from yaml file designed based on existing NIST template. Three main components of database service are:

	server.py

	database.yaml

	database.py

2.6.1.6.1 Step 1: Cloud Account and Database Instance Creation

Create Database instance and a database on a cloud (Azure SQL Database) AWS and Azure portal to create database instances and then create databases.

2.6.1.6.2 Step 2: Open API .yaml file

Use NIST database.yaml template file from NIST git directory

NIST database.yaml

	to get database , schema and DDL listing from one cloud environment (e.g Azure or AWS)

	to create/copy database schema and DDL in other cloud environment

2.6.1.6.2.1 API Specification database.yaml

NIST API template database.yaml for this database abstraction project is enhanced keeping relational SQL databases as main a focus. Relational database terminology is being used here and functions to performed database operations are defined in a python file.

Key points to keep in mind while working with SQL databases:

	Data records are stored in a table in form of rows and columns.

	A set of tables makes up a schema

	A number of schemas create a database

	Many databases can be created on a single server

SQL and NoSQL terminologies:

	SQL Database
	No SQL Database

	Database
	Database

	Table
	Collection

	Row
	Document

	Column
	Field

	Schema (static)
	Schema Dynamic

2.6.1.6.2.1.1 YAML File Path and Methods

Path: /database

No new features.

	get

	put and delete database features have major security concerns and not allowed in majority of the cases however I was successful in creating a new database by adding put method to test feature

Path: /database/{dbname}/schema/{schname}

Changes area made in current version of NIST database.yaml template.

	get

	put

	delete

	Added a name to the schema to perform following operations:

	search a named schema in a database if specified if not then list all schemas in a database

	create a named schema in a database

	delete a named schema in a database

NIST3.2.0: ``` /database/{dbname}/schema/

Updated as:

/database/{dbname}/schema/{schname} ```

	Operation ID changed to correct the function call

NIST3.2.0:

"cloudmesh.database.get.schema"
"cloudmesh.database.put.schema"
"cloudmesh.database.delete"

Updated as:

"cloudmesh.database.get_schema"
"cloudmesh.database.put_schema"
"cloudmesh.database.delete_schema"

Path: /database/{dbname}/schema/{schname}/table/{tblname}

This path is a new addition to the current NIST template. This is introduced to perform following table level operations:

	search a named table in a database schema or list all tables in the database schema

	create a named table in a database schema

	delete a named table in a database schema

NIST3.2.0:

not available

Updated as:

"cloudmesh.database.get_table"
"cloudmesh.database.put_table"
"cloudmesh.database.delete_table"

Path: /database/{dbname}/schema/{schema}/table/{tblname}/data

	get

	put

	delete

	Added a name to the schema and table to perform following operations:

	query a table from a given schema in a database

	add records in a table from a given schema in a database

	delete records from a table in a named schema in a database

NIST3.2.0:

/database/{dbname}/

Updated as:

/database/{dbname}/schema/{schname}/table/{tblname}/data

	Operation ID changed to correct the function call

NIST3.2.0:

"cloudmesh.database.get.data"
"cloudmesh.database.put.data"
"cloudmesh.database.delete.data"

Updated as: "cloudmesh.database.get_data" "cloudmesh.database.put_data" "cloudmesh.database.delete_data"

	Modified GET method to have flexible data pull from a table

NIST3.2.0: returns the data response for a single field named as Status

Updated feature:

	pull data from table without limiting for only one predefined field

	flexibility to set a return row count limit , current limit has been set as 10 records but can be changed based on implementation

Further Enhancements:

This feature can be further enhanced to perform variety of data pull reuqests ,data can be filter out for a given criteria based on a single field value

	Modified put method to add data into table

NIST3.2.0: adds the data for single column named status

Updated feature:

	flexibility to add data for multiple fields in a table (current limit is set as 7 up to columns in table)

	removed dependency on a field name , any fields from a table can be chosen to add data set (current limit is set as up to 7 columns in table)

Further Enhancements:

This feature can further be enhanced to insert records from file and also update feature can be added to update records based on a defined criteria

2.6.1.6.3 Step 3: Cloudmesh Configuration setup

2.6.1.6.3.1 Add database section for aws and azure in cloudmesh.yaml

Add database sections and introduce aws and azure config detail

2.6.1.6.3.2 Update .cloudmesh.yaml on local install

Add connection parameters

2.6.1.7 Progress

	Azure account created

	A database created on Azure SQL Database

	Docker setup on local

	Python script to test connection to databse and deploy table

	AWS account creation

	Code directory & file structure set up complete

	Database.py created for get ,set Db and Schema

	Database.py tested for get ,set Db and Schema

2.6.1.8 References

	Cloud Computing by von Laszewski https://github.com/cloudmesh-community/book/tree/master/books

	APIs and Python libraries https://cloud.google.com/python/docs/reference/

	Google Cloud APIs https://github.com/googleapis/google-cloud-python#google-cloud-python-client

	Cloudmesh Storage Open API https://github.com/cloudmesh/cloudmesh-storage/blob/master/cloudmesh/storage/spec/openapi_storage.yaml

	NIST https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/database.yaml

	Azure SQL Database https://azure.microsoft.com/en-us/services/sql-database/

	Azure Cloud Database Services https://azure.microsoft.com/en-us/product-categories/databases/

	AWS Cloud Database Services https://aws.amazon.com/products/databases/

	Google Cloud Database Servcies https://cloud.google.com/products/databases/?hl=pl

	Oracle Cloud Database Services https://www.oracle.com/database/cloud-services.html

	IBM Cloud Database Services https://www.ibm.com/cloud/databases

	MongoDB Cloud Database Services https://www.mongodb.com/cloud

2.6.2 Deployement Of Databases in Multiple Cloud ☁️

Balakrishna Katuru (Bala) fa19-516-141

🅾️ essential info to your project missing, see other report.md files from otehr studnets

2.6.2.1 Objective

Deploying Databases in multiple clouds.

2.6.2.2 Facts and comparisions about top could service providers

This section discuss about the details of various cloud service models, public cloud service market share of major service providers. And also what are the challenges the customers expereinced while using cloud services.

2.6.2.3 Types of Cloud – Services Models

[image: Image]Image

2.6.2.4 Enterprice Public Cloud Adaption

Look at the major public cloud providers stake.

[image: Image]Image

Top four Cloud service providers Scorecard in 2018.

[image: Image]Image

The challenges while using the Cloud services are given below

[image: Image]Image

2.6.2.5 Project Synapsis

	Can be considered cloud storage(Example: Create a Bucket in case of Google) to deploy the Database.

	Adapt a cloud based storage service using REST service & APIs.

	The Database will be deployed in multiple clouds using the appropriate storage service.

	Use an abstract API to deploy the Database independent of the underlying infrastructure.

2.6.2.6 Technologies

	Python

	Cloudmesh

	AWS

	API / Rest

2.6.2.7 Overview

This application will be developed using AWS SQL databaseas back end and Python Flask to create front end UI.

Backend: My SQL server database will be created on AWS. And then a table to be created to store the data Ex: Employee Name, Employee ID, Department, Salary, Phone, Email.

Frontend: Frontend will have basic controlsto input teh data like employee details. With user interaction, CRUD operations will be performed. Display all records, add new record, update existing record and delete the existing record.

Modules: Table, flask, mysql.

2.6.2.8 Implementation and Deployement steps

	Creation of cloud accounts

	Creating directories:

	Creating Flask Module: Create app.py script to import the flask module.

	Creating Database Configuration: Create db_config.py Python script to setup the MySQL database configurations to connect the database.

	Creating Main Script: Create main.py script, that will define all URIs or Action paths to perform CRUD operations with user interation.

	Implementing REST End Points:

2.6.2.9 Test Scenarios

	When execute the python main.py, the server will start on default port 5000.

	Success massage after insert data in to table. And also teh message after successful Update/delete operation.

2.6.2.10 References

	https://blog.rapidapi.com/how-to-use-an-api/

	https://www.devteam.space/blog/top-10-cloud-computing-services-providers/

	https://www.zdnet.com/article/top-cloud-providers-2018-how-aws-microsoft-google-ibm-oracle-alibaba-stack-up/

2.7 NIST CLOUD SERVICES

2.7.1 Cloudmesh Cloud AI Service ☁️

	Qiwei Liu, hid 151,

	Yanting Wan, hid 170

	Gregor von Laszewski

Link to the project: https://github.com/cloudmesh/cloudmesh-analytics

Link to the manual: https://github.com/cloudmesh/cloudmesh-analytics/blob/master/manual.md

The cloudmesh Cloud Ai service will provide AI capabilities that are running on the different cloud, e.g. chamelon, azure. For the example functions, linear regression, principle components analysis and so on will be provided so that users can utilize the computing power of the clouds to train their models. The cloudmesh cloud AI service will administrate multiple clouds and determine which cloud to use for scheduled tasks.

🅾️ maybe I am wrong, butI think we need to make user interface to this via cms sys generate command easier …

2.7.1.1 Architecture Design

[image: architecture]architecture

The architecture primarily contains four objects:

	User which is the actor

	The application running on local host using cloudmesh will manipulate multiple cloud instance, decides delegate computational tasks to which cloud

	The AI services will be running on the Azure or chameleon cloud, exposing APIs to incoming requests, and return the return the result to the local host

2.7.1.2 Implementation

2.7.1.2.1 Technologies Used

	Section
	Content

	Operating System
	Mac OS, Ubuntu

	OpenAPI
	The REST API will be defined by using OpenAPI specification

	Swagger editor
	The swagger editor is used to write API documentation based on the OpenAPI standard

	Flask
	The web application framework that handles incoming requests

	Connexion
	Connexion is an application on the top of Flask that will map the REST API documentation to python functions on Flask

	Pytest
	will be the testing framework

2.7.1.3 Progress Report

2.7.1.3.1 Work Breakdown

2.7.1.3.1.1 Week 6

Qiwei Liu

	Set up flask web application framework

	Set up the test framework and testing data based using sqlite3

	Done file upload, list file

	Set up chameleon instance

Yanting Wan

	Set up connexion, and uses it to map Opean API(yaml) file.

	Done uploading file locally, testing it on Swagger-ui

	Done testing a ai function with locally stored dictionary as parameter, testing it on Swagger-ui

2.7.1.3.1.2 Week 7

Qiwei Liu

	Update folder structure

	Gregor update folder structure, refactor file routes, refacter to analytics route

2.7.1.3.1.3 Week 8

	Migration to cloudmesh-analytics https://github.com/cloudmesh/cloudmesh-analytics

Yanting Wan

	Download a virtual box to run Ubuntu 19.04 system.

	Reinstall cloudmesh-cloud, mongoDB in Ubuntu 19.04.

	Start a VM in Chameleon.

	Create venv and install requirements in migrated project folder.

	[] Problem1: cannot ssh into VM

2.7.1.3.1.4 Week 9

Yanting Wan

	Write pytest scripts that test the result of kmeans

When writing pytest scripts, come across “Module Not Found Error”, to debug, start a new repository yanting-516-partial-project.

The reasons that cause “Module Not Found Error”: The “cloudmesh” directory in project has namespace conflict with “cloudmesh” directory in cloudmesh-cloud. Solution: Run command “pip install .” or “python setup.py install”. Then use command “python -m pytest” to run pytest.

2.7.1.3.1.5 Week 10

Yanting Wan

	Install Docker, run a simple REST service in container (yanting-516-partial-project)

	Use cms command to start server in background(from cloudmesh.common.run.background import run)

	Use cms command to make post/get request (python requests module)

	Use sphinx-apidoc to generate documentation.

Use docker without typing sudo

add docker group
$ sudo group add docker
add user to docker group
$ sudo gpasswd -a myusername docker
restart docker
$ sudo service docker restart
$ exit

2.7.1.3.1.6 Week 11

Yanting Wan

	Generate yaml file automatically:

	Use post/get decorator to read docstring inside endpoint functions, based on the docstring, output corresponding yaml file.

	Use jinja module, write a template file, based on the template file, generating corresponding endpoint functions and yaml file.

	Add code to yanting-516-partial-project to use functions in cloudmesh-cloud, then containerlize the project that requires cloudmesh-cloud.

2.7.1.4 Results

2.7.1.4.1 Benchmark

2.7.1.5 Reference

2.7.2 Unsupervised Machine Learning using Cloudmesh Cloud AI Services ☁️

Mohamed Elfateh Abdelgader, fa19-516-140

🅾️ progress update needed

🅾️ links to code, report, and git insights missing, see other students

🅾️ format to 80 chars

🅾️ fix markdown

🅾️ images dont show in the epub

2.7.2.1 Introduction

The main objective of this project is to provide AI capabilities on cloud. mainly I am trying to produce an cloud based method that achieves customer segmentation, which is the practice of grouping customers based on features like age, gender, interests, and spending habits. The developed functionalities will be implemented using cloud platforms mainly two nnodes on chameleon. The scope of work for this deployemnt is to build cababilities on the cloud allows recieving feeds in a data form end users and the service shouls interpret these feeds an responds back results as a segmentation representation of the recieved data, this reponse could be a visualization of the clustered data or tabular representation of the data.

2.7.2.2 Clutering with K-means

In todays world everything we practice as human being in our daily activities is tied to a personalized factor, which has been discovered by our services providers, marketing analyzers or data scientists, customer segmentation is the output of this segregation and binding.

In this project demonstration we will see how segmentation of a product line could be done on a pizza product line simple to segments pieces according to their thickness, width, length and weight in order to be mapped as customers desiring.

2.7.2.2.1 K-means

Kmeans clustering is one of the powerful Machine learning algorithm practices that defines and discover segmentation according to their patterns by converging in a finite number of iterations with a computational cost considered the most cost effective and efficient one compare to other clustering practices which is representing as:

0(k*n*d)

Where:

	k represents the umber of clusters.

	n represents the umber of data points (cutomers, products ..etc).

	d represents the umber of attributes (length, width, thikness …etc.).

as our practice will be in python lets explore the needed libraries for that, as we can see all of them can be found on the requirements.txt file:

	numpy

	flask

	connexion[swagger-ui]

	scikit-learn

2.7.2.3 Technologies Used

	Python 3.7

	OpenAPI.

	Connexion

	Development manchine is in MacOS

2.7.2.4 Design

[x] Database design completed. [x] ML design completed. [x] API design and coding completed.

2.7.3 Implementation

2.7.3.0.1 Architecture Design

[image: Architecture Design]

2.7.3.1 Progress

🅾️ remove project progres and integrate fnindings in proper full test where needed and appropriate

	[x] learned how to create a cloudmesh command

	[x] leraned how to use cloudmesh Config

	[x] learned how to start a vm on openstack with cloudmesh

	[x] drafted report

	Week Sep 29 - Oct 5

	[x] Collecting info about how to build prober APIs using OpenAPI.

	[x] learning about different DBs Mongodbg and SQLlite in order to decide which is the most prober fit.

	Week Oct 6 - Oct 12

	[x] Installing MongoDB.

	[x] loading datafiles in Dev environment.

	Week Oct 6 - Oct 12

	[x] Developing API prototype

	[x] Moving data (xls) to VM (local development env)

	Week Oct 13 - Oct 19

	[x] Developing API finalizations and tunning

	Week Oct 20 - Oct 26

	[x] Developing Python K-means clustering functionalities

	[x] Set up new chameleon instance

	Week Oct 27 - Nov 2

	[x] installing connexion[swagger-ui]

	[x] testing connexions on chameleon

	[x] testing first API reading in chameleon

	Week Nov 3 - Nov 9

	[x] Download and install Ubuntu on local machine (*had to do it due to the slowlyness on chameleon)

	[x] Moving production enviroment (cloudmesh, swagger-ui ..etc) to the local ubuntu machine

	[x] statrt on prototyping Machine learning scripts

	Week Nov 10 - Nov 16

	[x] testing Codes for unsuprvised ML using K-means

	[x] Canceling Mongodb and directly from csv

	Week Nov 17 - Nov 23

	[x] unifying codes and planning to move everything to chameleon.

	[?] trying to figure out why plotting is not showing results *stucked for a while here

	Week Nov 24 - Nov 30

	[x] drafting the updated report

2.7.3.2 Results

plotting diagram showing clusters [3] with centroid pointing

[image: Kmeans_graph]

2.7.3.3 References

1.Applied Unsupervised Learning with Python by Benjamin Johnston, Aaron Jones, Christopher Kruger 2.OpenAPI 3.0 Tutorial. https://app.swaggerhub.com/help/tutorials/openapi-3-tutorial 3.Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems Book by Geron Aurelien

2.8 OTHER

2.8.1 Impletmention of Cloudmesh CMS Command in Rstudio ☁️

Zhi Wang, fa19-516-165 , School of Public Health, Indiana University Bloomington

🅾️ please remove the progress section and instead integrate findings or limitations in your main text

Insights:

	https://github.com/cloudmesh-community/fa19-516-165/graphs/contributors

	https://github.com/cloudmesh/cloudmesh-r/graphs/contributors

Example code at github

	Code: https://github.com/cloudmesh-community/fa19-516-165/blob/master/project/cloudmesh_in_R.R

	Manual: https://github.com/cloudmesh/cloudmesh-r/blob/master/README.md

2.8.1.1 Abstract

The purpose of this project is to implement Cloudmesh service in RStudio /R. As a popular programming language, R/RStudio (IDE) are well-known in data science community. One major limitation of R is that it stores its data to local memory. As such, there is a need to integrate the cloud services into RStudio. The purpose of this project is to build a R package to use Cloudmesh-cms function in R and RStudio.

2.8.1.2 Introduction

The purpose of this project is to implement related features to simplify compute interface of Cloudmesh in RStuido and to build a R package to use Cloudmesh-cms function in R and RStudio. .

Cloudmesh is an easy way to manage different cloud services including Openstack, Azure, AWS, and Google Cloud Platform (under developing). Cloudmesh is able to start virtual machine in command line as well as a command shell. Using Cloudmesh is able to simplify the cloud implementation process.

R programming is a very popular language in data science field. RStudio is a development environment for R (similar Python v.s. Pycharm). R has strong presence in data analytics field. But it does not come without limitations. First, R programming language is based on S language (over 50 years old). But the old technologies have been updated since R becomes more and more popular. Another limitation is that R stores all objects in physical memory. As such, computing power highly depends on the local RAM capacity.

Thus, there is a need to integrate R with cloud services as R become popular in data science field. Even though most cloud services provide R programming in their service, Cloudmesh provides a channel to interact with different cloud services.

2.8.1.3 Process

Overall there are four steps to implement this project:

	Install necessary R package - Reticulate

Reticulate is a R programming package to interface with Python. It can choose either call the Python script in the same folder or write Python Code in the a Markdown session.

install.packages("reticulate")

load reticulate in R
library(reticulate)

	Indicate Python Environment

In this step, we need to indicate which Python environment should use. For example, in our class, we created a virtual environment to run our project.

activate the Python with existing Cloudmesh installation

Sys.setenv(RETICULATE_PYTHON = "/Users/zwang/ENV3/bin/python")

	Create the function to implement the Cloudmesh cms Function

cms <-function (command){
 library(reticulate)
 cloudmesh <- import("cloudmesh")
 cloudmesh$cloud$Shell$cms(command)
}

	Create the R Package for Distribution

4.1 One of the easiest way to create a R package through RStutido. The required library is use the package called ‘devtools’.

install.packages('devtools')

4.2 create a R Package Projects through the file menu

4.3 Indicate the function R file

4.4 Build the package and restart RStudido

4.5 Revise the R Document file in man folder

4.6 Build the .tgz file for distribution

2.8.1.4 Results

This project has successfully implemented Cloudmesh cms function within RStudio. The test results are included in the Screenshots session.

2.8.1.5 Screenshots

	Set the Python Environment in R

	load the reticulate and rcms package

[image: Set Python Environment in R]Set Python Environment in R

	test the cms help command in R

[image: test cms help]test cms help

	test the cms version command in R

[image: test cms version]test cms version

	pass a unit test

[image: test cms version]test cms version

2.8.1.6 Project Checklist

2.8.1.6.1 Limitations

This implementation has limitations. First, the project is only a small step of implementation Cloudmesh in R. It focuses only on one command - cms function Second, the Python script – Cloudmesh with OpenStack (based on previous work).

2.8.1.6.2 Acknowledgment

In this section, I would like to thank Dr.Laszewski and the teaching assistant for their help during this process.

2.8.1.7 References

	Cloudmesh Development Projects- Cloudmesh Compute

	Using the Cloud Client Libraries for Python

	Github Cloudmesh Compute

	oh-my-zhs

	Scripting OS X

	Google API core library

	Instructions for Creating Your Own R Package

2.8.1.8 Appendix

2.8.1.8.1 Progress

2.8.1.8.1.1 Week October 14

2.8.1.8.1.1.1 Solved Cloudmesh setting issues on macOS Catalina

2.8.1.8.1.1.2 Learned command line, bash file, and zsh in macOS Catalina

Since Catalina uses zsh as its default shell, installation process is a little different compared with previous bash file. Thanks to Dr. Laszewski, I was able to install Cloudmesh smoothly. Besides this, I also studied a little further on shell on .bash_profile and .zprofile.

2.8.1.8.1.1.2.1 Why switch from .bash_profile to .zprofile

I found that it is even though there are bash v4 and v5 available, Apple does not update to newer versions because of the licenses (bash v3.2 with GPL v2. and v4/v5 with GPL v3.).

2.8.1.8.1.1.2.2 Solution to stick to bash without warning message

Bash file is not gone but will not last indefinitely either. For Catalina users, if you want to stick to bash, you can add follow environment variable to your .bash_profile or .bashrc.

export BASH_SILENCE_DEPRECATION_WARNING=1

For more information about zsh configuration, please visit oh-my-zsh for more information.

2.8.1.8.1.1.2.3 Complete Steps to reinstall/create Python virtual environment in macOS Catalina

	Why we need Python virtual environments?

For different python projects, developers need different python development environment to deploy codes. Virtual environments are needed to avoid destroy

	Steps to to create new environment for new projects by command lines.

	Create a new python 3 virtual environment and name it

$ python3 -m venv ~/environment_name

	Activate your new virtual environment. This step is important since you need to activate your new python environment.

$ source ~/environment_name/bin/activate

	Even though you can use pycharm to install a package, you still need to have a package manager to help yo manage your packages. Starting this point, you are able to install the packages you want.

$ pip install pip -U

	To manage your environment easier, you can modify your zprofile and switch your environment easily.

$ alias d="source ~/environment_1/bin/activate "
$ alias env3="source ~/environment_2/bin/activate"

Next time, you can just type aliases to activate your environments.

2.8.1.8.1.2 Week October 21

Identified related Google Cloud Libraries that are useful to this project, including

	Key Management Service API

	Compute Engine Client API

2.8.1.8.1.3 Week November 4

Reviewed the Google Cloud Platform Python client library. In this week, I reviewed the documentations of Cloud Client Libraries for Python.

2.8.1.8.1.4 Week November 11

Started to code Provider.py file for GCP.

2.8.1.8.1.5 Week November 26

After discussion with Dr. Laszewski, I decided to switch the project from implementing Google Cloud Platform to implementing Cloudmesh with OpenStack within RStudio.

2.8.1.8.1.6 Week of December 2

	Listed all required steps to implement the project

	Re-defined the scope of this project with instructor

	Write the function of rcms and create the rcms R package

2.8.2 Using Cloudmesh in Airflow - Azure and AWS ☁️

Austin Zebrowski, fa19-516-159

azebrows@iu.edu

2.8.2.1 Abstract

Cloudmesh enables easy creation of virtual machines (VMs) in multiple clouds. Apache Airflow is an open-source data pipeline orchestration tool. By leveraging the strengths of each, files can be moved between clouds, and the files’ status and history can be viewed through a user interface (UI). This can be achieved by creating a library of functions that uses Cloudmesh commands in an Airflow environment.

2.8.2.2 Introduction

With Airflow, we can configure directed acyclic graphs (DAGs) that define a sequence of tasks in a workflow. We can then view these DAGs in a UI that displays their schedules, code definitions, histories, and execution logs. By creating a library of functions that uses Cloudmesh within Airflow, we can easily schedule and visualize the startup of VMs on multiple clouds and subsequent interactions with these clouds.

2.8.2.3 Cloudmesh Airflow Architecture

[image: Architecture]Architecture

2.8.2.3.1 Motivation

Cloudmesh enables users to easily work in a variety of cloud environments. With this, there can be some difficulty to keep environments neatly managed. For instance, a user can spin up 3 VMs in different environments and easily forget to clean up when they are finished using them. It is also likely that a user may skip a step when beginning to work on a new cloud. It is possible, too, that a user will repeat steps that they have already completed, simply because they cannot remember what has or has not been done. Managing Cloudmesh’s workflow and work environment can be handled in a few ways. Airflow can solve these problems uniquely well, though, as workflow management is its entire function. By managing Cloudmesh workflows in Airflow, a user can easily see what has been completed, and when. The user can also view execution and error logs, visualize dependencies between tasks, and schedule tasks - for instance, stopping all VMs at the end of each day and starting them back up the next morning.

2.8.2.3.2 Docker Implementation

As open source projects, both Apache Airflow and Cloudmesh are constantly under development. As a result, managing versions of these project can be difficult to manage. As each of the projects gets updated, a user must make the same updates on their side. Moreover, these projects can have nuances when being used on different operating systems. For instance, Airflow is not compatible with Windows. Building these softwares in Docker helps to solve some of these problems. A user can easily add new functionality to their Docker images, and will be able to build on different operating systems as they please.

2.8.2.4 Airflow - Overview

Airflow is an task scheduler that can be used to create, visualize, and monitor workflows. Although it originated at AirBnb, Airflow is currently maintained by the Apache Software Foundation as an open-source project. Airflow has a lot of “out of the box” functionality but, because it executes native python code, the functionality of workflows is limited only by what is achievable in Python. The workflows are designed as Directed Acyclic Graphs (DAGs), which can be easily viewed in a Web UI. In a DAG, tasks are chained together to show dependencies. A task can only be reached by completing its preceding tasks, and it is not possible to complete tasks out of order. Airflow can be configured to be run on premises, or on any cloud (AWS, GCP, Azure, etc.).

2.8.2.5 Airflow - Architecture

At a high level, Airflow is comprised of six architectural components:

	Scheduler/Executor The Airflow scheduler is a service that continously monitors tasks and DAGs, looking for tasks that are ready to be run. Task will be run at scheduled intervals, as long as all of their dependencies have been met.

	Worker Nodes Worker nodes are the components that execute the tasks specified in a DAG. There are three main execution types available in Airflow, and each execution type uses worker nodes differently.

	In “Sequential Executor” mode, a single worker node executes tasks in sequence.

	In “Local Executor” mode, a single worker node (on the same machine as the Scheduler) executes tasks in parallel.

	In “Celery Executor” mode, a pool of worker nodes (on a different server from the Scheduler) executes the tasks in a distributed fashion.

	Metadata Database The Airflow Metadata Database contains data about task schedules, dependencies, and executions. The Airflow Scheduler reads the Metadata database to determine which tasks are ready to be run at any given time.

	Web UI In the Airflow Web UI, users can view their DAGs, trigger DAG executions, configure source or destination connections, set variables, and manage user permissions.

	Webserver Airflow’s Web UI is enabled by a webserver, which handles the network requests and web documents relevant to the UI.

	Log Files Airflow’s log files contain time-ordered messages about the events that occur in the Airflow environment.

This includes actions that happen in the Web UI, task executions, and processes that happen in the background. The logs are stored as a Python dictionary.

The nuances of Airflow’s architecture and capabilities are not discussed here.

[image: Airflow_Architecture]Airflow_Architecture

2.8.2.6 Results

It is achievable to run Cloudmesh and Airflow within a Docker image. Users of this image can effectively author DAGs that instruct Cloudmesh to initialize the MongoDB database, choose a cloud, provide keys to that cloud, and start a new VM. This functionality is proven for AWS EC2 instances and Azure VMs. Users are also able to schedule DAGs that clean up their environment, by deleting VMs. One can follow these patterns to orchestrate any sort of workflow, provided that it is possible to execute the workflow in Python, or any of the operators available in Airflow.

A shortcoming of this work is that it takes users off the command line. Users will author dags on the command line, but when using the Airflow GUI they will be limited to what is possible in they GUI. This can cause some problems. For instance, certain users cannot use Azure’s command line interface unless they manually type in their password. Since Airflow does not have a portal for authentication, this would require a complex workaround. So, it becomes a troublesome process to use Azure’s CLI within Airflow DAGs. In these cases, Cloudmesh can be a tremendous asset - it is able to simplify many cloud tasks.

2.8.2.7 Opportunities for Improvement

	Building Cloudmesh on Docker, and interfacing with AWS, Azure, and Chameleon reveals a few areas for improvement. Most significantly, it is possible to create multiple VMs with the same name. This happens when a user creates multiple VMs from the same container. It is not possible to delete these VMs in Cloudmesh, since they have the same name. It is possible, in AWS and Azure, to delete these VMs from the cloud’s GUI. In Chameleon cloud this cause problems, where the existing VMs cannot be deleted, and new VMs cannot be created.

	In the cloudmesh.yaml file, the MongoDB download locations must be changed to specify a location that is not mounted as a volume to a Docker container.

	The Cloudmesh function “vm ip show” is not working in Azure or AWS. However, it does not provide a “Not implemented” response.

	Stopping and removing docker containers that are running cloudmesh results in a situation where Cloudmesh is not aware of any local VMs. This causes errors when trying to list VMs, for example.

2.8.2.8 Implementation Manual

These implementation steps assume that you have Docker and Docker Compose installed, ssh keys, and that you have cloned this repository

	Technologies Used

	Apache Airflow

	Azure VM

	AWS EC2

	Cloudmesh

	Docker

2.8.2.8.0.1 Configure Amazon AWS:

	Login to AWS Account

	Go to Identity and Access Management

	Create ‘cloudmesh’ group

	Create ‘cloudmesh’ user

	Create New Access Key for user ‘cloudmesh’

	Place the Access Key ID and Secret Access Key ID in cloudmesh.yaml file

	Place the .pem file in the ~/.cloudmesh directory

	Specify the .pem file name in the cloudmesh.yaml file

	Configure the EC2 Security Groups

	Add an inbound custom TCP Rule with open port 22. Open this port to your PC, for SSH

2.8.2.8.0.2 Configure Azure:

	Login to Azure Account

	Copy your Subscription ID to a notepad

	Go to the Registrations page, and register a ‘cloudmesh’ application

	Copy your application’s client and tenant IDs to a notepad

	Go to the Certificates and Secrets page, and create a new Client Secret

	Copy the Client Secret to a notepad

	Go to Access Control and add cloudmesh as a contributor

	Add the credentials from your notepad into the cloudmesh.yaml file

2.8.2.8.0.3 Local Directory Config:

This filed must NOT be copied into your image

	Create a configuration file for your AWS Secrets, to enable SSH

	mkdir aws

	touch credentials (contents) [cloudmesh] aws_access_key_id=***** aws_secret_access_key=*******

	Create a configuration file for your passcodes

	touch pass.txt

	specify password for scp

2.8.2.8.0.4 Modify DAGs:

	Modify the files in the DAGs directory to use your ssh key

2.8.2.8.0.5 Cloudmesh.yaml Config:

	Ensure that you have configured your AWS and Azure accounts (refer to those sections)

	Fill out the MongoDB data section, specifying your mongo username and password

	Replace the mongo path and mongo log paths, in favor of a directory that is not specified as a volume in docker-compose.yml file

2.8.2.8.0.6 Startup:

	Build the docker image

	docker build -t cloudmesh/cloudmesh-cms .

	Modify volume paths in docker-compose.yml to point to your local directory

	Run your images

	docker compose up -d

	When finished, stop and remove containers

	docker-compose down

2.8.2.8.0.7 Airflow UI

While containers are running… 1. Access the Airflow UI - localhost:8080 2. Turn the DAG schedulers to “on” 3. Trigger the DAGs

2.8.2.8.0.8 Run Pytests:

	pytest -q test_airflow.py

	pytest -q test_airflow.py

2.8.2.9 References

AWS Quickstart

Airflow Validation Tests

Azure Quickstart

Airflow Overview

Workflow Management

Airflow Internals

Airflow Architecture

2.9 TODO

2.9.1 AI REST Services using Open API ☁️

Sahithi Ancha, sancha@iu.edu, fa19-516-174

🅾️ please finish

🅾️ gregor also addea a README.md with some notes that chould be pointed to or integarted

2.9.1.1 Abstract

This project aims to provide an AI-service for the logistic regression functionality via two methods, namely Scikit-Learn and Keras. The user inputs a file which is saved to the MongoDB database. Then we retrieve the same file and perform logisctic regression on it according to the user input, i.e., based on the service the user specifies.

2.9.1.2 Introduction

We first connect to the MongoDB database via the server file which also directs us to the Open Api scpecification which contains the endpoints for the user to access. I created a seperate python file to make uploading files by the user much easier. The uploaded file that is in the ‘.csv’ format is converted to json and then uploaded to the database. When the user indicates that they want to fit and predict based on the dataset they provide, this same file is retrieved and then processed in order to fit a logistic regression model, predict values and also print out the accuracy score.

To connect to the MongoDB database, I used cloudmesh -> mongo -> cmdatabase. Also, I can upload any file in the same directory with ease but if it’s in a different folder, this upload function does not work and I have to fix it.

(To-do: * I’m trying to figure out how to convert the json file back into a csv file before proscessing it. Alternatively, i’m also trying to save the csv file as it is without changing its format so that it’s easier to retrieve and process. * I got the part of returning values after fitting them wrong and need to use Jsonify as Professor mentioned. While my program can fit and predict with an average accuracy score, I need to find a better way to pass the values returned from fit to the predict function.)

2.9.1.3 Related Work

2.9.1.4 Architecture

2.9.1.5 Technologies used

	cloudmesh

	Python

	REST

	Open API

	Flask

	MongoDB

2.9.1.6 Progress

	Set up the computer

	Installed cloudmesh

	Set up MongoDB

	Used cloudmesh to connect to MongoDB and create a database and collection to which the user files are uploaded.

	Uploaded files to MongoDB database

	Wrote API programs for 4 AI services

	Wrote programs for the Scikit-Learn and Keras Logistic Regression.

2.9.1.7 Benchmark and Evaluation

	Access and use the AI services

2.9.1.8 Conclusion

2.9.1.9 References

	

2.9.2 Mutiple source cloud based datawarehouse ☁️

Deepak Deopura fa19-516-168

🅾️ progress unclear

Gregor thought originally 2 differnt databases are on the data sources but that may not be the case ??? as clarification was done by student he does only file based data sources.

student will correct this in writeup. remember students form class have implemented various things in different clouds that can be leveraged, you will have to develop likely one that is not yet done plus what you do in this project. you can start with what students have implemented, look at awss3 provider, google, azure are forthcomming, local was notyet don, which you should use ;-) as this would allow you to simulate the data warehouse locally as well as the db, thus speeding up your development due to limited time

🅾️ please learn markdown

🅾️ this project has significant issues as technology such as snowflake is use that does not provide a free tier. The 30 day free licensises is insufficient. Please chose a different technology for testing. However you can in addition to some other artifact certaily use snowflake, but it can ot be your main objective. When reading your comment you actually do understand the issue …. Maybe you can use MariaDB or something like that. Also remember you need to technically compare streaming vs backu and upload. What we found n AWS is that streaming for data takes 45 min while backing up and reload 2 minutes …. however we have not spend any time optimiszing this. This is storing images from aws into our cloudmesh mongodb

2.9.2.1 Abstract

	AWS to/from Azure data transfer using APIs.

	Extended version can be push data in SQL base warehouse (for example snowflake warehouse. It may be out of scope for now for this project purpose.

2.9.2.2 New Abstract

	Connect ot Azure synapse data warehouse and use cm commands to interact with it

	Azure sysapse scale-up/scale-out using command

	Read /write data in Azure synapse database using files

2.9.2.3 Objective

Develop APIs to transfer file data from AWS and Azure to cloud hosted database in AWS(MariaDB).

2.9.2.4 New Objective

Develop APIs to interact with Google Bigquery data warehouse

2.9.2.5 Motivation

come up with a real motivation not just replication of snowflake

use NIST OpenAPI specification for formulation abstract data ware housing services

	Learn about various data warehouse solution provided by major cloud provide (AWS,Azure,Google)

	Learn to work with cloud base datawarehouse and interaction with datawarehouse from cloud or local machine

	Learn about Open APIs

	Understand data flow from/to datawarehouse, cloud and local

showcase on an application

2.9.2.6 Terminology

what is data warehouse? Data warehouse is used to collect data from multiple source system including RDBMS, transaction system, files and and process data for analytical and decision support system. datawarehose is used for business reporting, historical data analysis, dashboarding for better decision support.

what is different to rdbs ? RDBMS is relational database to support and record transaction.

what is difference to ??? Data warehouse purpose is to support analytics and reporting and does not need real time data. It is optimized for data querying. data is collected from multiple sources and processed to have single point of truth of data. Data model is mostly denormalized to have efficient query time. Transaction database purpose is to to record data transaction and it is optimized for insert/update then querying data. data model is highly normalized and data processing is real time.

what is NIST BDRA and how does it fit in this project

2.9.2.7 Releated Technologies

Snowflake:

Motivation of this project is from Snowflake cloud warehouse (https://www.snowflake.com) . I am using snowflake cloud base warehouse form some of my clients. Snowflake is currently providing most of their services in AWS. They are also increasing their footprint in Azure and will soon start on Google cloud. I would like to use this project opportunities when there are multiple clouds in an organization and they want to build warehouse based on various data sources across clouds.

There are likely others

	what is aws doing or not? - AWS data warehouse solution is AWS Redshift

	what is azure doing or not - Azure Synapse Analytics isn sql base data warehouse and analytics solution by Azure

	what is google doing - BigQuery by Goolge cloud solution for data warehouse

how does streaming contrast this effort?

2.9.2.8 Architecture

Definition of an OPenAPI for datawarehousing Programmatically control warehouse clusters, scale up and scale out of machines and perform database administration, DDL and DML commands. Limitations

Are there existing efforts?

TBD

##Cloudbased datawareouse solution comparison Datawarehouse solution can be compared based on some of following parameters * Ability to scale up or scale out without affecting data. So that datawarehouse can be scale up for high load data job or scale out to support concurrent jobs * Independent of storage and compute * Type of supported data like structural, JSON, semi structured, unstructured * SQL and other support for easiness to query data

2.9.2.9 Technology

	AWS

	Azure

	Python

	Cloudmesh storage and databse

	NIST Cloudmesh Database abstraction (done by other student of this class Harsha, look up report)

	NIST REST API

2.9.2.9.1 OpenAPI

TBD link to spec

2.9.2.9.2 Server API

	specify the operationID’s

	specify how to run

	implement for 2 database technologies as it otherwise does not make sense

	as students have likely figured out how to start databases on various cloud you also have to show how to host the database on the cloud (this last step may prevent you from completing in time, as it requires some experimenting on your part, but as you said you have experience, this should not be an issue.

2.9.2.9.3 Manual

Describe how to run while making as much as possible automated e.g. cms sys command generate … (excersie from class)

 Usage:
 googlebigquery create [DATASET_ID] [PROJECT_ID]
 googlebigquery list [PROJECT_ID]
 googlebigquery delete [DATASET_ID] [PROJECT_ID]
 googlebigquery listtables PROJECT_ID DATASET_ID
 googlebigquery loadtable SOURCE PROJECT_ID DATASET_ID [TABLE_ID]
 googlebigquery exporttable SOURCE PROJECT_ID DATASET_ID [TABLE_ID]
 googlebigquery runquery PROJECT_ID DATASET_ID [TABLE_ID] [QUERY_TXT]
 googlebigquery listjob [PROJECT_ID]

 Arguments:
 DATASET_ID The Google bigquery dataset id.
 PROJECT_ID The google big query project id
 TABLE_NAME The name of the table
 JOB_ID The job id in bigquery
 SOURCE Local file which need to be load into bigquery table

 Description:
 googlebigquery create [DATASET_ID] [PROJECT_ID]
 Create a dataset in given project

 googlebigquery list [PROJECT_ID]
 List all datasets present in given project_id

 googlebigquery delete [DATASET_ID] [PROJECT_ID]
 Delete dataset from given project

 googlebigquery listtables PROJECT_ID DATASET_ID
 List all tables from given dataset and project

 googlebigquery loadtable SOURCE PROJECT_ID DATASET_ID [TABLE_ID]
 Lod source file into given table

 googlebigquery runquery PROJECT_ID DATASET_ID [TABLE_ID] [QUERY_TXT]
 run given QUERY_TXT

 googlebigquery listjob [PROJECT_ID]
 List all jobs present in given project_id

2.9.2.10 Testing

develop pytests that automate testing you prg and service work, best done with kubernetes as you do have windows.

do benchmarks also with various size of data

so you need lots of tests and some minor benchmarks

2.9.2.11 benchmarks

variable: cloudmesh storage providers: local, azure, aws, google (box) variable: data size: figure out what impact datasize has ??? variable: where to place the datawarese: local ???, aws warehose???, aws maridb??? ????

use case: is there a usecase that we can use that is not from your company? Maybe something we can simulate, with files.

Some of use cases of cloud based data warehouse * Use cloud scale up to run heavy data load job * Use scale out to support multiple queries from user for better performance * Able to programmatically control data warehouse based on job size and load on system

Evaluate what this does:

	https://github.com/cloudmesh/cloudmesh-redshift (what is this,) This package is used to interact with AWS redshift data warehouse. It is used to externally interact with redshif cluster, increase size of cluster, rename cluster, change password etc.

It also allow used to do basic DDL and DML operation on database hosted on redshift. I think objective of my project can be slightly changed to interact with Azure data warehouse. We have implementation in cloudmesh for storage, compute, database. We can similarly have implementation for all datawarehouse services provided by different cloud provide. As redshift is already implementated so my project can be focused to include Azure data warehouse in cloudmesh bundle. We can build cloudmesh package for datawarehose from various cloude provide (similar to cloudmesh-storage , cloudmesh-compute etc)

2.9.2.12 Progress

	Installed cloudmesh on Windows 10

	Created cloud account on AWS, AZURE and Google

	Compared various data warehouse solution provided by major clod provider (AWS- redshift,Azure-Synapse,Google-BigQuery)

	Created sample data base on BigQuery,Azure Synapse and AWS red shift

	Checked for Python libraries require to connect to BigQuery,Redshift and Azure warehouses

	Created functions to run queries from python

##Reference https://docs.microsoft.com/en-us/azure/sql-data-warehouse/ https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html https://cloud.google.com/bigquery/docs/

3 REFERENCES

☁️

EPUB/media/file52.png
> cns("version")

11 "+
--#\nl name | package I VERSION | version I source
I\
~=#\nl cloudnesh_cloud I cloudnesh. cloud 14.1.5 | cloudmesh-cloud.giteeebS8c69f6af802bd3be316c2583 | /Users/zwang/cn/cloudnesh-
Il 1 | | 8b5bfb99dcs3 I cloud/cloudnesh/cloud/__init__.py
I\nl cloudnesh_cnds I cloudnesh. crds 14.2.4 | cloudnesh-cnds. giteefel07b6aedade725e7ech8ab141f | /Users/zwang/cn/cloudnesh-
i 1 | | £349305f3ab I cnds/cloudnesh/cnds/__init__.py
I\nl cloudnesh_common I cloudmesh. comon 14.2.17 1 cloudmesh-connon. git€6121793414003677d35e23c5e6f | /Users/zwang/cn/Cloudnesh-
i 1 | | 0021232c7d8c6 I common/cloudnesh/common/__init__.py
I\nl cloudnesh_configuration | cloudnesh.configuration | 4.2.2 | cloudmesh-configuration.gitefoobf64729382d0e6674 | /Users/zwang/cm/cloudnesh-configuration/cloudne
s I\nl 1 | | 5a99793c17454f37392¢ I h/configuration/__init__.py
I\nl cloudnesh_inventory | Cloudnesh.inventory | 4.0.24 | cloudmesh-inventory.git@e967259dc4ae82584d336608 | /Users/zwang/cm/cloudnesh-
i 1 | | e0983e71c7335dc4 I inventory/cloudnesh/inventory/__init.
I\nl cloudnesh_ranual I cloudmesh. ranual 14.0.0 | cloudmesh-nanual .git€6e6118b0d7800059d360a7ce896 | /Users/zwang/cn/Cloudnesh-
i 1 | | §7420838fef3 | manual/cloudnesh/manual/__init__.py
I\nl cloudnesh_sys I cloudmesh. sys 14.1.4 1 cloudnesh- I /Users/zwang/cn/cloudnesh-
i 1 | | sys.gitebdee1860d1a5¢dd7bas7cabces321a9bfSac2aze | sys/cloudmesh/sys/_init__.py
I\nl git hash 1 | | c31d8b6 |
\nl pip 1 | 119.3.1 |
I\nl python 1 | 13.7.4 |
s

--+\nYou are running a supported version of python: 3.7.4\nYou are running a supported version of pip: 19.3.1\n

EPUB/media/file27.png
B Command Prompt - python

rest accuracy: 92.6%

| Machine Attribute | Value |

‘10", '10.0.18362", 'SPo’, ')

cpu_count.	&
mac_version	
machine	Camoar,)
mem_available	1.3 6ig
mem_free	1.3 6ig
mem_percent	83.5%
mem_total	7.9 Gis
mem_used	6.6 Gig
node	('DESKTOP-4951569",)
platform	Windows-10-10.0.18362-5P0.
processor	(‘Intelsa Family 6 Model 158 Stepping 9, GenuineIntel',)
processors	Windows
python	3.7.4 (tags/v3.7.4:200359112¢, Jul 8 2019, 20:34:20) [MSC v.1916 64 bit (AD64)]
release	(10°,)
sys	win32
systen	Windows. i
user I	
version	10.0.18362

| |

Vi TR,
Siroe-as52560°) | T
siroeassisca:) || Windows | o) 10 1w
Siron-sasrsca-) | !

s

EPUB/media/file43.png
Type

Relational

NoSQL- Key/Value

NOSQL- Document
Data Warehouse
In-Memory
TimeSeries
NoSQL-Graph

Ledger

AWS

RDS, Aurora

DynamoDB
SimpleDB

DocumentDB

AWS Redshift
ElastiCache for Redis
Timestream

Neptune

Quantum ledger Database
QLDB

Azure

Azure Database
Azure SQL Database
Database for MySQL

Database for PostgreSQL
Database for MariaDB

CosmosDB,
Table Storage

CosmosDB

Azure SQL Data Warehouse
Cache for Redis

Time Series Insights

CosmosDB

Google

Cloud SQL
Cloud Spanner

Cloud Bigtable
Cloud FireStore
Firebase Realtime Database

Big Query

Cloud Memorystore

Google Cloud Bigtable
Cloud Spanner*

EPUB/media/file18.png
Resources API Keys

Displaying 1 API Keys

EPUB/media/file44.png
1
| .cloudmesh.yaml :
. GET AWS :
i } —> - Co
| o PUT |
! Authentication | —» LDB H |
i - pecere || 5@ P
l 1
| |
. server.py :
e API i
database.yaml |
— 9 atabaso.yom .
i i
Command Line! - I
1 |
. | !
i v i

! database.py

EPUB/media/file26.png
Model: "sequential™
Layer (type) Output Shape Param #
dense (Dense) (None, 64) 50240
dense_1 (Dense) (None, 10) 650
activation (Activation) (None, 10) 0
Total params: 50,890
Trainable params: 50,890
Non-trainable params: @
Train on 60000 samples
Epoch 1/8
60000/60000 [= 25 37us/sample - loss:
Epoch 2/8
60000/60000 [1s 22us/sample - loss:
Epoch 3/8
60000/60000 1s 21us/sample - loss:
Epoch 4/8
60000/60000 1s 21us/sample - loss:
Epoch 5/8
60000/60000 1s 21us/sample - loss:
Epoch 6/8
60000/60000 1s 22us/sample - loss
Epoch 7/8
60000/60000 [1s 21us/sample - loss:
Epoch 8/8

1s 22us/sample - loss:

.3890

.2902

L2787

L2731

.2668

.2637

.2614

.2591

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

.8912

.9190

9227

9242

.9263

.9261

.9279

9274

EPUB/media/file35.png
Cloud mesh

9]
T Qo
I
(@) - —
? 2.8%
o B0
5 23¥s
O xn
£ " 3
{ ! i =
| i i]
| i i g
i i i
H N B 2
Lo /B
T P
-1
H ! K
- /
- ¢
g
Q! i
i Qi g
o ;
o i
{ao :
. i ——
i Q! i (
- a w 28
| 3 : | 25
i o i I mm
P ; Iz
| S ! | 55
! i i | 82
= : 1=
N\ : 0 D
. f i
i ;

Azure Blob
storage

GCP filesystem

Azure blob filesystem

EPUB/media/file53.png
> Testing R file using 'testthat’

OK F i S | Context
1 | test [2.3 s]

Duration: 3.2 s

oK: 1
Failed: 0
Warnings: 0
Skipped: 0

Test complete

EPUB/media/file28.png
model loss

038
036
034

go3x

loss

030

028

026

EPUB/media/file10.png
Enter Password

Password *

Confirm Password *

The password must have at least 12 characters.

The password cannot exceed 40 characters.

The password cannot contain the First Name of the user.
The password cannot contain the Last Name of the user.
The password cannot contain the email address.

The password must have at least 1 lowercase character.
The password must have at least 1 uppercase character.

The password must have at least 1 numeric character.

Password must contain at least one special character, but none of the following: "~ <>\

xt: Payment Information

EPUB/media/file19.png
Add Public Key help cancel
Note: Public Keys must be in the PEM format.

PUBLIC KEY.

EPUB/media/file6.png

EPUB/media/file36.png
Server

Cloudmesh shell

cms storage_service [Options]

list
copy.

add
dsync

delete
rsync

OpenAPI

storage_service
REST API

EPUB/media/file11.png
Payment Information

You won't be charged unless you elect to upgrade the account.

You may see a small, temporary charge on your payment method. This is a verification hold that will be
removed automatically. See the FAQ for more information.

Oracle uses third-party payment processor CyberSource for Oracle Store payment processing. CyberSource will
request and collect certain information as part of the payment processing. Please refer to CyberSource's privacy
statement at: http:/www.cybersource.com/privacy for the terms applicable to the data collected.

Add Credit Card Det:

Need help? Contact Chat Support

EPUB/media/cover.png
FA19 Proceedings
Cloud Computing
Engineering

e516

Gregor von Laszewski

Editor

laszewski@gmail.com

https://cloudmesh-community.github.io/pub/vonlaszewski-e516-proceedings.cpub

December 22,2019 - 07:07 PM

Created by Cloudmesh & Cyberaide Bookmanager, https:/github.com/cyberaide/bookmanager

EPUB/media/file54.png
Cloudmesh

SR

Airflow DAG x

Task Log
Files

Cloudmesh Cloud

t Docker Containers
L

Azure VM AWS WM

EPUB/media/file41.png
>_

Command Line

cms frugal list
or
cms frugal boot

frugal.py

Check to see if pricing info already exists in local
mongodb for AWS, GCP, and Azure

if no

get_pricing(cloudservice)
return list_flavors_w_price

turn into numpy array where dimensions
transformed by price

!

If frugal list -> return top x elements and print to
console

if frugal boot -> return the top vm and boot as
active cloud

EPUB/media/file37.png
Ve N

Cloudmesh (Cloudmesh Storage REST Service [Cloudmesh Storage Command Shell
(Storage Transfer
create | get | dist | delete | > transfer config [options..]

> transfer [options.]
> transfer status [options..]

Compute put | search | syne | syncstatus | ETESEEREE
‘ Common (Cloudmesh Provider
) EEEE— Multi-cloud Storage Access Functions
Commandshell
cMD5 eate | get | hst | delete | pt | seah | syne | syncstatus | confighist

> Cloudmesh local Provider I ‘ Cloudmesh Google Provider I

Cloudmesh Azure Provider

Confi e -
Database G ((

ation
Local File AWS Azure
\ / System S3 storage Blob storage

EPUB/media/file24.png
Identity » Compartments » Compartment Details
srikagr

The root Compartment of the tenancy

Compartment Information | Tags ‘

OCID: ..b7tdtq Show Copy.

Authorized: Yes

ACTIVE Created: -

EPUB/media/file12.png
You have $291.21 left in your trial. When your trial is over, your account will be limited to Always Free resources.

EPUB/media/file42.png
AWS Azure Google MongoDB
Auora® SQL Database* Cloud SQL*
ﬁs;m‘ Cosmos DB Cloud Spannert MongoDB Atias**
" Databaso for MySaL" Cloud Bgtabie
Dyrama08 omcached | | Dalabese for PosigresaL - Cloud Firssione
ElasiCache for Momcach Database for MariaDB - Fiabaso raliine Database
ElsiiCache for Redis SQL Sarvr on Viual Machines| |~ Cloud Momory Sore
DocumentDE Database Migration Service
Nepture CacheorRes
Umesteam Tabls Storage
Data Explorer
Oracle 1BM SAP
BV DbZ on Cioud
10001 Deisbens 8M Db2 Warahouse on Cloud AP G Pltor Big D Serves . | * et

Database Exadata Cloud Service
Databse xacta Cloud af Customer
Autonomous Data Warehouse
Databass Cioud Service Bare Metal
Autonomous Transacion Processng
Databass Coud Senvice Virual Machin

BN Cloudant
1BM Cloud Databases for MongoDB
184 Cloud Databases for Elasicsearch
18M Cloud Databases for elcd

18M Cioud Databases for PosigreSQL
18M Cioud Messages for RabbiiVQ
18M Compose for JanusGraph

1BM Compose for ScylaDB

Hyper Profect DBaaS for MongoDB
Hyper Protect DBaS for PosigreSQL

‘SAP Coud Platiom SAP HANA serves®
‘SAP Cod Plaiom ASE service
‘SAP Cioud Plaiom Document senvs

** Open Source

EPUB/media/file55.png
Airflow's General Architecture

&
S

Workers

Scheduler/Executor Webserver

Metadata Task Execution
Database Logs

EPUB/media/file38.png
google to oracle

google to azure

google to awss3

google to local

oracle to google

oracle to azure

oracle to awss3

oracle to local

azure to google

azure to oracle

azure to awss3

azure to local

awss3 to google

awss3 to oracle

awss3 to azure

awss3 to local

local to google:

local to oracle:

local to azure

loca to awss3

00

‘Time taken by cloud to cloud copy command

17.765
3018
17158
3289
17.902
3222
o085
looso
17.281
3365
16.799
3424
15954
3047
1897
0727
158.247
358
17551
3488
18203
3485
2711
1435
15426
o563
17,968
3835
19.44
a3
2982
1799
16.243
2501
15.075
2458
15568
2645
15596
2503
-z M8
= size 10MB
25 50 75 100 s 10 s 0o

Duration in seconds

EPUB/media/file25.png
Figure 1 -

EPUB/media/file30.png
Cloudmesh Compute API Service

Images Flavors Security
Groups

Cloudmesh Abstract Provider

Cloudmesh

Compute

Command Shell Cloudmesh Compute Access Functions

Images Flavors Virtual Security
Storage Machines Groups

Google Cloud AWS Cloud
Compute API Compute API

EPUB/media/file13.png
ORACLE (loud
Account @

Cloud Account Name

Sign In using Traditional Cloud Account

EPUB/media/file31.png
5

Compute Benchmark

00000
-
00000
00000
o0
o - I l - I -
e s e
e - o Teses Toem .
e e ey Con S o

maure 59308 111105 1762625 353012 152851

m-terminate-1
75225

2757550

——
st

53017
35143

B chameleon
maus
mawre

EPUB/media/file48.png
Job Title

8 Clevel Executive / Owner

#1Challenge

@ 36% - Costmanagement

€ 50% - Costmanagement

24% — Security
@ 26% — Control

€@ 24% — Cost management
€@ 0% - Cost management

€@ 30% - Cost management

#2 Challenge

36% — Security

Evenly split between other options
22% — Cost management

24% — Cost management
20% - Security

27% — Security

CeR®e @2

23% — Performance

EPUB/media/file39.png
01 End AP Engine.
point calls: Calls Cloud

op Storage to
Engine. write fles
object s created e ite il

EPUB/media/file9.png
« C @ mysenvices.usoraclecloud.com/mycloud/signup?

Terms of Use and Privacy ~ Cookie Preferences

Ad Choices

Enter Account Details

Account Type *

Company Use Personal Use

Cloud Account Name *

- % O o

\Enter lowercase letters and numbers

Pick a recognizable name, such as your project, for use in account URLs
https://myservices- cloud_account.name console oraclecloud.com

Home Region *

Please select...

<>

Always Free services now available in select regions. See Regions for service availability.

First Name * Last Name *

Address *

Copyright © 2019, Oracle and/or its affiliates. All right

EPUB/media/file22.png
= ORACLE Cloud

Resource Manager
Email Delivery
Application Integration
Monitoring

Developer Services

Marketplace

7 More Oracle Cloud Services
Platform Services

Classic Data Management Services

& Govemnance and Administration
Account Management

Identity

‘Security

Governance

Administration

Edit User Capabilities

User Information

Groups g
Dynamic Groups

Policies

Compartments

Federation

Authentication Settings

EPUB/media/file23.png
Identity

Users

Groups
Dynamic Groups
Policies
Compartments
Federation

Authentication Settings

Tag Filters

1o tag fiters applied

add | clear

Compartments

Create Compartment

ManagedCompartmentForPaaS

Status

@ Active

@ Active

ocip
.b7tdtg

-..3sl4va

Authorized

Yes

Yes

Subcompartments

1

Created

Thu, Nov 21, 2019, 1:28:39 PM UTC

Showing 2 Iltems

Page 1

EPUB/media/file40.png
o— 90

Standard Storage Tier

Storage Lifecycle Policy.

Scheduled for transfer to Scheduled for deletion
lower cost storage tier

EPUB/media/file15.png
S East (Ashbum) v

Compute Com pute

Select a Compartment
Instances

Dedicated Virtual Machine Hosts —r— Oracle Cloud Infrastructure uses Compartments to organize your resources.

Instance Configurations .
g View and manage your resources: Select a Compartment and resource type using the filters on the left.
<= Compartment Filter

Instance Pools
Learn more about Compartments
Cluster Networks
Autoscaling Configurations
Custom Images

Boot Volumes

Boot Volume Backups

List Scope

COMPARTMENT

<>

Pick a compartment

EPUB/media/file32.png
ERROR: executing command 'vm ssh wang542-vm"

*ip_public

*ip_public

Traceback (most recent call last):
File

\school\b649 engineeringcloudcomputing\enva\cm\cloudnesh-cnds\cloudnesh\shell\shell.py", line 968, in main

stop = cnd.onecnd(command)
File

\school\b649 engineeringcloudcomputing\enva\cm\cloudnesh-cnds\cloudnesh\shell\shell.py", line 375, in onecnd

return func(arg)
File "d:\school\b649 engineeringcloudcomputing\enva\cm\cloudnesh-cnds\cloudnesh\shell\connand.py”, line 163, in new

func(instance, args, arguments)
File

\school\b649_engineeringcloudcomputing\enva\cm\cloudnesh-cloud\cloudnesh\vm\connand\vm.py”, line 844, in do_vm

provider.ssh(vm=ym)
File "d:\school\b649 engineeringcloudcomputing\enva\cm\cloudnesh-cloud\cloudnesh\compute\vm\Provider.py", line 447, in ssh

return self.p.ssh(vm=vm, command=command)
File "d:\school\b649 engineeringcloudcomputing\enva\cm\cloudnesh-cloud\cloudnesh\compute\openstack\Provider.py”, line 1161, in ssh

ip = vm['ip_public’]
KeyError

ip_public’

EPUB/media/file14.png
ORACLE Cloud

katukota

Oracle Cloud Account Sign In

User Name

abc@gmail.com

Password

Need help signing in? Click here

EPUB/media/file49.png
Actor

request——>

retur

Local Host

Cloudmesh for Al

Azure

Alfunctions

Chameleon

Alfunctions

EPUB/media/file46.png
Enterprise Public Cloud Adoption

% of Respondents Running Applications

ans
e

VMware Cloud on AWS
®Running apps

Oracle Cloud
= Experimenting

Alibaba Cloud ®Plan to use

Source: RightScale 2018 State of the Cloud Report

EPUB/media/file45.jpg
Service Class Main Access & Management
Tool

Web Browser

Cloud
Development
Environment

Visual
Infrastructure

Manager.

EPUB/media/file29.png
0930
0925
0920
0915
0910

accuracy

0905
0900
0895
0890

model accuracy

EPUB/media/file16.png
US East (Ashburn) \v/ Q @ m

Profile
oracleidentitycloudservice/srikargr@gmail.com
ikagr (rc Tenancy: srikagr

Service User Console

User Settings

Sign Out

EPUB/media/file20.png
= ORACLE Cloud

Resource Manager
Email Delivery
Application Integration
Monitoring

Developer Services

Marketplace

7 More Oracle Cloud Services
Platform Services

Classic Data Management Services

& Govemnance and Administration
Account Management

Identity

‘Security

Governance

Administration

srikagr

Edit Audit Retentio

Tenancy Information | Tags

Tenancy Informa
OCID: ..b7td
Name: srikagr (&)

Audit Retention Period: 90
1 th

Tenancy Details
Region Management

Announcements

EPUB/media/file50.png
> # have to indidate the system variable first

> Sys.setenv(RETICULATE_PYTHON = */Users/zwang/ENV3/bin/python")

> # use the reticulate library

> library(reticulate)

> library(rens)

> py_configO

python: /Users/zwang/ENV3/bin/python

Tibpython: /Library/Franeworks/Python. framenork/Versions/3.7/11b/python3.7/config-3. 7m-darwin/Libpython3.7.dylib
pythonhome: /Library/Franeworks/Python. framenork/Versions/3.7:/Library/Franeworks/Python. framework/Versions/3.7
version: 3.7.4 (v3.7.4:009359112¢, Jul 8 2019, 14:54:52) [Clang 6.0 (clang-600.0.57)]

numpy: /Users/zwang/ENV3/1ib/python3 . 7/site-packages/numpy

numpy_version: 1.17.2

EPUB/media/file7.png
© © 006

Autonomous
Database

2 x Database
20GB Storage Each

Compute

2xVM
1GB Memory Each

Storage

100GB Block
10GB Object
10GB Archive

Load
Balancing

10 Mbps
Bandwidth Shape

EPUB/media/file33.png
cloud aws
Getting the list of images for aws cloud, this might take a few minutes ...
Images list for aws cloud retrieved successfully

Saving the data to file

Inporting the saved data to database

ERROR: executing command 'image list --refresh’

Command "mongoinport --db cloudmesh --collection aws-image --authenticationDatabase admin --username admin

password admin123 ~file C:\Users\wange\.cloudnesh\tmp\tmp_import_file.json' returned non-zero exit status 1.

Command "mongoinport --db cloudmesh --collection aws-: username admin

age --authenticationDatabase admin password admin123 ~file C:\Users\wange\.cloudnesh\tmp\tmp_import_file.json' returned non-zero exit status 1.
Traceback (most recent call last]

File

:\school\b649_engineeringcloudcomputing\enva\cm\cloudnesh-cnds\cloudnesh\shell\shell.py", line 968, in main

stop = cnd.onecnd(command)
File

\school\b649 engineeringcloudcomputing\enva\cm\cloudnesh-cnds\cloudnesh\shell\shell.py", line 375, in onecnd

return func(arg)
File

\school\b649_engineeringcloudcomputing\enva\cm\cloudnesh-cnds\cloudnesh\shell\connand.py”, line 163, in new

func(instance, args, arguments)
File

:\school\b649_engineeringcloudcomputing\enva\cm\cloudnesh-cloud\cloudnesh\inage\comand\inage.py”, line 84, in do_image
ages ()
\school\b649 engineeringcloudcomputing\enva\cm\cloudnesh-cloud\cloudnesh\nongo\DataBaseDecorator.py”, line 86, in wrapper

images = provider..
File

current = f(*args, **kwargs)
File

:\school\b649_engineeringcloudcomputing\enva\cm\cloudnesh-cloud\cloudnesh\conpute\vn\Provider.py”, line 151, in images

return self.p.images(*args, **kwargs)
File

:\school\b649_engineeringcloudcomputing\enva\cm\cloudnesh-cloud\cloudnesh\conpute\aws \Provider.py”, line 1274, in images

self.get_images_and_import(data)

File "d:\school\b649 engineeringcloudcomputing\enva\cm\cloudnesh-cloud\cloudnesh\nongo\DataBaseDecorator.py”, line 127, in wrapper
result = self.database. importAsFile(data, collection,db)

File "d:\school\b649 engineeringcloudcomputing\enva\cm\cloudnesh-cloud\cloudnesh\nongo\Crbatabase.py”, line 591, in importasFile
MongoDBController(). inportAsFile(data, collection, db)

File "d:\school\b649 engineeringcloudconput ing\envé\c\cloudnesh-cloud\cloudnesh\nongo\HongoDBController.py”, line 995, in importAsFile
result = Shell.run2(cnd)

File
shell=True)

File "C:\Python37\lib\subprocess.py", line 395, in check output
**kuargs) . stdout

File "C:\Python37\lib\subprocess.py”, line 457, in run
output=stdout, stderr=stderr)

\school\b649_engineeringcloudcomputing\enva\cm\cloudnesh-cloud\cloudnesh\connon3\shell.py", line 66, in run2

subprocess.CalledprocessError: Command ‘mongoimport --db cloudmesh --collection aws-image --authenticationDatabase admin --username admin --password adwin123 --drop --file C:\Users\wangc\.cloudmesh\tmp\tmp_import_file.json' returned non-zero exit status 1.

EPUB/media/file47.png
AWS vs. Azure vs. Google vs. IBM Enterprise Scorecard

_mmm
% Adoption 19%

YoY Growth in Adoption 15% -
% Adoption in Beginners 47% - 18% 14%

% with Footprint >50 VMs 44% 17% 14%

YoY Growth in Footprint> 50 VMs. 14% 42%

W AWS leads Source: RightScale 2018 State of the Cloud Report
[Other vendors lead AWS

RIGHTSCaLE

EPUB/media/file17.png
ACLE Cl

Identity » Users » User Details

! This user is created through IDCS federation. Manage user profile details through IDCS federation here.

oracleidentitycloudservice/srikargr@gmail.com

Description: srikargr@gmail.com

Edit User Capabilities | [ASSY

User Information | Tags

ACTIVE

OCID: ..z4g2la Show Copy Status: Active

Created: Thu, 21 Nov 2019 13:25:39 UTC Federated: Yes

Identity Provider: OracleldentityCloudService

Email :

EPUB/media/file8.png
« C @ mysenvices.usoraclecloud.com/mycloud/signup?

Terms of Use and Privacy Cookie Preferences

Ad Choices

Create Account

Email Address *

‘ abc@gmail.com

Country/Territory *

‘ United States

<

Terms of Use

By clicking on the "Next" button below, you understand and agree that the use of Oracle's web site is subject
to the Oracle.com Terms of Use. Additional details regarding Oracle's collection and use of your personal
information, including information about access, retention, rectification, deletion, security, cross-border
transfers and other topics, is available in the Oracle Privacy Policy.

Need help? Contact Chat Support

Copyright © 2019, Oracle and/or its affiliates. All right

EPUB/media/file51.png
> cms("help™)

[1] "\nDocumented commands Ctype help <topics: ANEOF data inage open sec start version

\nadrin debug info pause service stop wn \nbanner default init plugin set stopuatch workflow_draft\nclear

echo inventory provider shell sys \ncommands ~ flavor ip q steep var \nconfig group key quit source vbox
\ncontainer help man register ssh vcluster \n\n®

EPUB/media/file34.png
4)

Cloudmesh

Storage

N\ —
Compute

N\ —

Common

N\ —

CommandShell

CMD5

Configur
Dattabase ation

\

Cloudmesh Storage REST Service

create ‘ get ‘ list ‘

put | search | gync |

delete |

Sync ‘
status

Cloudmesh Storage Command Shell

Transfer
> transfer config [options..]
> transfer [options..]
> transfer status [options..]
> transfer statistic

create

Cloudmesh Provider

Multi-cloud Storage Access Functions
| get | list | delete | put | search sync Sync Config

Cloudmesh local Provider J ‘ Cloudmesh Google Provider J ‘ Cloudmesh Azure Provider

Local File
System

Cloud Multi-
Regional Storage

o

Google Cloud

Azure
Blob storage

4

EPUB/media/file21.png
Tenancy Information | Tags

Tenancy Information

OCID: ..b7tdtq Show Copy Home Region: US East (Ashburn)

Name: srikagr @ CSI Number: 22681068

Audit Retention Period: 90 Days
If you recently updated the audit retention period, please allow several minutes for the value to
take effect.

Object Storage Settings

Amazon 3 Compatibility API Designated Compartment: srikagr (root) SWIFT APl Designated Compartment: srikagr (root)

Object Storage Namespace: iduqvdgvshe

