

INTRODUCTION	TO	DATASCIENCE

Vibhatha	Fiox	Gregor	von	Laszewski

(c)	Gregor	von	Laszewski,	2018,	2019

INTRODUCTION	TO	DATASCIENCE

1	PREFACE
1.1	Disclaimer	☁�
1.1.1	Acknowledgment
1.1.2	Extensions

2	INTRODUCTION
2.1	Introduction	to	Python	☁�
2.1.1	References

3	INSTALATION
3.1	Python	3.7.4	Installation	☁�
3.1.1	Hardware
3.1.2	Prerequisits	Ubuntu	19.04
3.1.3	Prerequisits	macOS
3.1.3.1	Installation	from	Apple	App	Store
3.1.3.2	Installation	from	python.org
3.1.3.3	Installation	from	Hoembrew

3.1.4	Prerequisits	Ubuntu	18.04
3.1.5	Prerequisite	Windows	10
3.1.5.1	Linux	Subsystem	Install

3.1.6	Prerequisit	venv
3.1.7	Install	Python	3.7	via	Anaconda
3.1.7.1	Download	conda	installer
3.1.7.2	Install	conda
3.1.7.3	Install	Python	3.7.4	via	conda

3.2	Multi-Version	Python	Installation	☁�
3.2.1	Disabling	wrong	python	installs
3.2.2	Managing	2.7	and	3.7	Python	Versions	without	Pyenv
3.2.3	Managing	Multiple	Python	Versions	with	Pyenv
3.2.3.1	Installation	pyenv	via	Homebrew
3.2.3.2	Install	pyenv	on	Ubuntu	18.04
3.2.3.3	Using	pyenv
3.2.3.3.1	Using	pyenv	to	Install	Different	Python	Versions
3.2.3.3.2	Switching	Environments

3.2.3.4	Updating	Python	Version	List
3.2.3.4.1	Updating	to	a	new	version	of	Python	with	pyenv

3.2.4	Anaconda	and	Miniconda	and	Conda
3.2.4.1	Miniconda
3.2.4.2	Anaconda

3.2.5	Exercises
4	FIRST	STEPS
4.1	Interactive	Python	☁�
4.1.1	REPL	(Read	Eval	Print	Loop)
4.1.2	Interpreter
4.1.3	Python	3	Features	in	Python	2

4.2	Editors	☁�
4.2.1	Pycharm
4.2.2	Python	in	45	minutes

4.3	Google	Colab	☁�
4.3.1	Introduction	to	Google	Colab
4.3.2	Programming	in	Google	Colab
4.3.3	Benchamrking	in	Google	Colab	with	Cloudmesh

5	LANGUAGE
5.1	Language	☁�
5.1.1	Statements	and	Strings
5.1.2	Comments
5.1.3	Variables
5.1.4	Data	Types
5.1.4.1	Booleans
5.1.4.2	Numbers

5.1.5	Module	Management
5.1.5.1	Import	Statement
5.1.5.2	The	from	…	import	Statement

5.1.6	Date	Time	in	Python
5.1.7	Control	Statements
5.1.7.1	Comparison
5.1.7.2	Iteration

5.1.8	Datatypes
5.1.8.1	Lists
5.1.8.2	Sets
5.1.8.3	Removal	and	Testing	for	Membership	in	Sets
5.1.8.4	Dictionaries
5.1.8.5	Dictionary	Keys	and	Values

5.1.8.6	Counting	with	Dictionaries
5.1.9	Functions
5.1.10	Classes
5.1.11	Modules
5.1.12	Lambda	Expressions
5.1.12.1	map
5.1.12.2	dictionary

5.1.13	Iterators
5.1.14	Generators
5.1.14.1	Generators	with	function
5.1.14.2	Generators	using	for	loop
5.1.14.3	Generators	with	List	Comprehension
5.1.14.4	Why	to	use	Generators?

6	REFERENCES

1	PREFACE

Sat	Nov	23	05:22:41	EST	2019	☁�

1.1	DISCLAIMER	☁�
This	book	has	been	generated	with	Cyberaide	Bookmanager.

Bookmanager	is	a	tool	to	create	a	publication	from	a	number	of	sources	on	the
internet.	 It	 is	 especially	 useful	 to	 create	 customized	 books,	 lecture	 notes,	 or
handouts.	 Content	 is	 best	 integrated	 in	markdown	 format	 as	 it	 is	 very	 fast	 to
produce	the	output.

Bookmanager	has	been	developed	based	on	our	experience	over	the	last	3	years
with	 a	more	 sophisticated	 approach.	Bookmanager	 takes	 the	 lessons	 from	 this
approach	and	distributes	a	tool	that	can	easily	be	used	by	others.

The	 following	shields	provide	 some	 information	about	 it.	Feel	 free	 to	click	on
them.

pypipypi v0.2.28v0.2.28 	 LicenseLicense Apache	2.0Apache	2.0 	 pythonpython 3.73.7 	 formatformat wheelwheel 	 statusstatus stablestable 	 buildbuild unknownunknown

1.1.1	Acknowledgment

If	you	use	bookmanager	to	produce	a	document	you	must	include	the	following
acknowledgement.

“This	 document	 was	 produced	 with	 Cyberaide	 Bookmanager
developed	 by	 Gregor	 von	 Laszewski	 available	 at
https://pypi.python.org/pypi/cyberaide-bookmanager.	 It	 is	 in	 the
responsibility	 of	 the	 user	 to	make	 sure	 an	 author	 acknowledgement
section	 is	 included	 in	 your	 document.	 Copyright	 verification	 of
content	included	in	a	book	is	responsibility	of	the	book	editor.”

The	bibtex	entry	is
@Misc{www-cyberaide-bookmanager,

		author	=			{Gregor	von	Laszewski},

https://github.com/cloudmesh-community/book/blob/master/chapters/version.md
https://github.com/cyberaide/bookmanager/blob/master/bookmanager/template/disclaimer.md
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://github.com/cloudmesh/cyberaide-bookmanager/blob/master/LICENSE
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://travis-ci.com/cloudmesh/cyberaide-bookmanager

1.1.2	Extensions

We	 are	 happy	 to	 discuss	 with	 you	 bugs,	 issues	 and	 ideas	 for	 enhancements.
Please	use	the	convenient	github	issues	at

https://github.com/cyberaide/bookmanager/issues

Please	do	not	file	with	us	issues	that	relate	to	an	editors	book.	They	will	provide
you	with	their	own	mechanism	on	how	to	correct	their	content.

		title	=				{{Cyberaide	Book	Manager}},

		howpublished	=	{pypi},

		month	=				apr,

		year	=					2019,

		url={https://pypi.org/project/cyberaide-bookmanager/}

}

https://github.com/cyberaide/bookmanager/issues

2	INTRODUCTION

2.1	INTRODUCTION	TO	PYTHON	☁�

	Learning	Objectives

Learn	 quickly	 Python	 under	 the	 assumption	 you	 know	 a	 programming
language
Work	with	modules
Understand	docopts	and	cmd
Contuct	some	python	examples	to	refresh	your	python	knpwledge
Learn	about	the	map	function	in	Python
Learn	how	to	start	subprocesses	and	rederect	their	output
Learn	more	advanced	constructs	such	as	multiprocessing	and	Queues
Understand	why	we	do	not	use	anaconda
Get	familiar	with	pyenv

Portions	 of	 this	 lesson	 have	 been	 adapted	 from	 the	 official	 Python	 Tutorial
copyright	Python	Software	Foundation.

Python	is	an	easy	to	learn	programming	language.	It	has	efficient	high-level	data
structures	and	a	simple	but	effective	approach	to	object-oriented	programming.
Python’s	simple	syntax	and	dynamic	typing,	together	with	its	interpreted	nature,
make	 it	 an	 ideal	 language	 for	 scripting	 and	 rapid	 application	 development	 in
many	areas	on	most	platforms.	The	Python	interpreter	and	the	extensive	standard
library	are	freely	available	in	source	or	binary	form	for	all	major	platforms	from
the	 Python	Web	 site,	 https://www.python.org/,	 and	 may	 be	 freely	 distributed.
The	same	site	also	contains	distributions	of	and	pointers	to	many	free	third	party
Python	modules,	programs	and	tools,	and	additional	documentation.	The	Python
interpreter	can	be	extended	with	new	functions	and	data	types	implemented	in	C
or	 C++	 (or	 other	 languages	 callable	 from	 C).	 Python	 is	 also	 suitable	 as	 an
extension	language	for	customizable	applications.

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-intro.md
https://docs.python.org/2/tutorial/
http://www.python.org/
https://www.python.org/

Python	is	an	interpreted,	dynamic,	high-level	programming	language	suitable	for
a	wide	range	of	applications.

The	philosophy	of	python	is	summarized	in	The	Zen	of	Python	as	follows:

Explicit	is	better	than	implicit
Simple	is	better	than	complex
Complex	is	better	than	complicated
Readability	counts

The	main	features	of	Python	are:

Use	of	indentation	whitespace	to	indicate	blocks
Object	orient	paradigm
Dynamic	typing
Interpreted	runtime
Garbage	collected	memory	management
a	large	standard	library
a	large	repository	of	third-party	libraries

Python	 is	 used	 by	 many	 companies	 and	 is	 applied	 for	 web	 development,
scientific	 computing,	 embedded	 applications,	 artificial	 intelligence,	 software
development,	and	information	security,	to	name	a	few.

The	 material	 collected	 here	 introduces	 the	 reader	 to	 the	 basic	 concepts	 and
features	of	the	Python	language	and	system.	After	you	have	worked	through	the
material	you	will	be	able	to:

use	Python
use	the	interactive	Python	interface
understand	the	basic	syntax	of	Python
write	and	run	Python	programs
have	an	overview	of	the	standard	library
install	 Python	 libraries	 using	 pyenv	 for	 multipython	 interpreter
development.

E	doe	not	attempt	to	be	comprehensive	and	cover	every	single	feature,	or	even
every	 commonly	 used	 feature.	 Instead,	 it	 introduces	 many	 of	 Python’s	 most

https://www.python.org/dev/peps/pep-0020/

noteworthy	features,	and	will	give	you	a	good	idea	of	the	language’s	flavor	and
style.	After	 reading	 it,	 you	will	be	able	 to	 read	and	write	Python	modules	and
programs,	and	you	will	be	ready	to	learn	more	about	the	various	Python	library
modules.

In	order	to	conduct	this	lesson	you	need

A	computer	with	Python	2.7.16	or	3.7.4
Familiarity	with	command	line	usage
A	 text	 editor	 such	 as	 PyCharm,	 emacs,	 vi	 or	 others.	You	 should	 identity
which	works	best	for	you	and	set	it	up.

2.1.1	References

Some	 important	 additional	 information	 can	 be	 found	 on	 the	 following	 Web
pages.

Python
Pip
Virtualenv
NumPy
SciPy
Matplotlib
Pandas
pyenv
PyCharm

Python	 module	 of	 the	 week	 is	 a	 Web	 site	 that	 provides	 a	 number	 of	 short
examples	on	how	to	use	some	elementary	python	modules.	Not	all	modules	are
equally	useful	and	you	should	decide	if	there	are	better	alternatives.	However	for
beginners	this	site	provides	a	number	of	good	examples

Python	2:	https://pymotw.com/2/
Python	3:	https://pymotw.com/3/

https://www.jetbrains.com/pycharm/
https://www.python.org/
https://pip.pypa.io/en/stable/
https://virtualenv.pypa.io/en/stable/
http://www.numpy.org/
https://scipy.org/
http://matplotlib.org/
http://pandas.pydata.org/
https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv
https://pymotw.com/2/
https://pymotw.com/3/

3	INSTALATION

3.1	PYTHON	3.7.4	INSTALLATION	☁�

	Learning	Objectives

Learn	how	to	install	python.
Find	additional	information	about	Python.
Make	sure	your	Computer	supports	Python.

In	this	setion	we	explain	how	to	install	python	3.7.4	on	a	computer.	Likely	much
of	the	code	will	work	with	earlier	versions,	but	we	do	the	development	in	Python
on	the	newest	version	of	python	available	at	https://www.python.org/downloads
.

3.1.1	Hardware

Python	 does	 not	 require	 any	 special	 hardware.	We	 have	 installed	 Python	 not
only	on	PC’s	and	Laptops,	but	also	on	Raspberry	PI’s	and	Lego	Mindstorms.

However,	there	are	some	things	to	consider.	If	you	use	many	programs	on	your
desktop	 and	 run	 them	 all	 at	 the	 same	 time	 you	 will	 find	 that	 in	 up-to-date
operating	 systems	 you	 will	 find	 your	 self	 quickly	 out	 of	 memmory.	 This	 is
especially	true	if	you	use	editors	such	as	PyCharm	which	we	highly	recommend.
Furthermore,	as	you	likely	have	lots	of	disk	access,	make	sure	to	use	a	fast	HDD
or	better	an	SSD.

A	typical	modern	developer	PC	or	Laptop	has	16GB	RAM	and	an	SSD.	You	can
certainly	do	python	on	a	$35	Rapbperry	PI,	but	you	probably	will	not	be	able	to
run	 PyCharm.	 There	 are	 many	 alternative	 editors	 with	 less	Memory	 footprint
avialable.

3.1.2	Prerequisits	Ubuntu	19.04

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-install.md
https://www.python.org/downloads

Python	 3.7	 is	 installed	 in	 ubuntu	 19.04.	 Therefore,	 it	 already	 fulfills	 the
prerequisits.	However	we	recommend	that	you	update	 to	 the	newest	version	of
python	and	pip.	However	we	recommend	that	you	update	the	the	newest	version
of	python.	Please	visit:	https://www.python.org/downloads

3.1.3	Prerequisits	macOS

3.1.3.1	Installation	from	Apple	App	Store

You	want	 a	 number	 of	 useful	 tool	 on	 your	macOS.	 They	 are	 not	 installed	 by
default,	but	are	available	via	Xcode.	First	you	need	to	install	xcode	from

https://apps.apple.com/us/app/xcode/id497799835

Next	you	need	to	install	macOS	xcode	command	line	tools:

3.1.3.2	Installation	from	python.org

The	 easiest	 instalation	 of	 Python	 for	 cloudmesh	 is	 to	 use	 the	 instaltion	 from
https://www.python.org/downloads.	 Please,	 visit	 the	 page	 and	 follow	 the
instructions.	After	this	install	you	have	python3	avalable	from	the	commandline

3.1.3.3	Installation	from	Hoembrew

An	 alternative	 instalation	 is	 provided	 from	 Homebrew.	 To	 use	 this	 install
method,	you	need	 to	 install	Homebrew	first.	Start	 the	process	by	 installing	 the
python	3	using	homebrew.	Install	homebrew	using	the	instruction	in	their	web	page:

Then	you	should	be	able	to	install	Python	3.7.4	using:

3.1.4	Prerequisits	Ubuntu	18.04

We	 recommend	 you	 update	 your	 ubuntu	 version	 to	 19.04	 and	 follow	 the

$	xcode-select	--install

$	/usr/bin/ruby	-e	"$(curl	-fsSL	https://raw.githubusercontent.com/Homebrew/install/master/install)"

$	brew	install	python

https://www.python.org/downloads
https://apps.apple.com/us/app/xcode/id497799835
https://www.python.org/downloads
https://brew.sh/#install

instructions	for	that	version	instead,	as	it	is	significantly	easier.	If	you	however
are	not	able	to	do	so,	the	following	instructions	may	be	helpful.

We	first	need	 to	make	sure	 that	 the	correct	version	of	 the	Python3	is	 installed.
The	default	version	of	Python	on	Ubuntu	18.04	is	3.6.	You	can	get	the	version
with:

If	the	version	is	not	3.7.4	or	newer,	you	can	update	it	as	follows:

You	can	 then	check	 the	 installed	version	using	 python3.7	--version	 which	 should	 be	
3.7.4.

Now	we	will	create	a	new	virtual	environment:

The	edit	the	~/.bashrc	file	and	add	the	following	line	at	the	end:

now	activate	the	virtual	environment	using:

now	you	can	install	the	pip	for	the	virtual	environment	without	conflicting	with
the	native	pip:

3.1.5	Prerequisite	Windows	10

Python	 3.7	 can	 be	 installed	 on	 Windows	 10	 using:
https://www.python.org/downloads

For	3.7.4	can	go	to	 the	download	page	and	download	one	of	 the	different	 files
for	Windows.

$	python3	--version

$	sudo	apt-get	update

$	sudo	apt	install	software-properties-common

$	sudo	add-apt-repository	ppa:deadsnakes/ppa

$	sudo	apt-get	install	python3.7	python3-dev	python3.7-dev

$	python3.7	-m	venv	--without-pip	~/ENV3

alias	ENV3="source	~/ENV3/bin/activate"

ENV3

$	source	~/.bashrc

$	curl	"https://bootstrap.pypa.io/get-pip.py"	-o	"get-pip.py"

$	python	get-pip.py

$	rm	get-pip.py

https://www.python.org/downloads
https://www.python.org/downloads/release/python-374/

Let	us	assume	you	choe	the	Web	based	installer,	than	you	click	on	the	file	in	the
edge	 browser	 (make	 sure	 the	 account	 you	 use	 has	 administrative	 priviledges).
Follow	the	instructions	that	the	installer	gives.	Important	is	that	you	select	at	one
point	“[x]	Add	to	Path”.	There	will	be	an	empty	checkmark	about	this	that	you
will	click	on.

Once	it	is	installed.	chose	a	terminal	and	execute

However,	 if	you	have	 installed	conda	 for	 some	reason	you	need	 to	 read	up	on
how	to	install	3.7.4	python	in	conda	or	identify	how	to	run	conda	and	python.org
at	the	same	time.	We	see	often	others	giving	the	wrong	installation	instructions.

An	alternative	 is	 to	use	python	from	within	 the	Linux	Subsystem.	But	 that	has
some	limitations	and	you	will	need	to	explore	how	to	exxess	the	file	system	in
the	subssytem	to	have	a	smooth	integration	between	your	Windows	host	so	you
can	for	example	use	PyCharm.

3.1.5.1	Linux	Subsystem	Install

To	activate	the	Linux	Subsystem,	please	follow	the	instructions	at

https://docs.microsoft.com/en-us/windows/wsl/install-win10

A	suitable	distribution	would	be

https://www.microsoft.com/en-us/p/ubuntu-1804-lts/9n9tngvndl3q?
activetab=pivot:overviewtab

However	as	it	uses	an	older	version	of	python	you	will	ahve	to	update	it.

3.1.6	Prerequisit	venv

This	 step	 is	 highly	 recommend	 if	 you	 have	 not	 yet	 already	 installed	 a	 venv	 for
python	to	make	sure	you	are	not	interfering	with	your	system	python.	Not	using
a	venv	could	have	catastrophic	consequences	and	a	destruction	of	your	operating
system	tools	if	they	realy	on	Python.	The	use	of	venv	is	simple.	For	our	purposes
we	assume	that	you	use	the	directory:

python	--version

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/en-us/p/ubuntu-1804-lts/9n9tngvndl3q?activetab=pivot:overviewtab

Follow	these	steps	first:

First	cd	to	your	home	directory.	Then	execute

You	can	add	at	 the	end	of	your	 .bashrc	(ubuntu)	or	 .bash_profile	 (macOS)	file
the	line

so	the	environment	is	always	loaded.	Now	you	are	ready	to	install	cloudmesh.

Check	if	you	have	the	right	version	of	python	installed	with

To	make	sure	you	have	an	up	to	date	version	of	pip	issue	the	command

3.1.7	Install	Python	3.7	via	Anaconda

3.1.7.1	Download	conda	installer

Miniconda	is	recommended	here.	Download	an	 installer	for	Windows,	macOS,
and	Linux	from	this	page:	https://docs.conda.io/en/latest/miniconda.html

3.1.7.2	Install	conda

Follow	instructions	to	install	conda	for	your	operating	systems:

Windows.	 https://conda.io/projects/conda/en/latest/user-
guide/install/windows.html
macOS.	 https://conda.io/projects/conda/en/latest/user-
guide/install/macos.html
Linux.	https://conda.io/projects/conda/en/latest/user-guide/install/linux.html

~/ENV3

$	python3	-m	venv		~/ENV3

$	source	~/ENV3/bin/activate

$	source	~/ENV3/bin/activate

$	python	--version

$	pip	install	pip	-U

https://docs.conda.io/en/latest/miniconda.html
https://conda.io/projects/conda/en/latest/user-guide/install/windows.html
https://conda.io/projects/conda/en/latest/user-guide/install/macos.html
https://conda.io/projects/conda/en/latest/user-guide/install/linux.html

3.1.7.3	Install	Python	3.7.4	via	conda

It	is	very	important	to	make	sure	you	have	a	newer	version	of	pip	installed.	After
you	 installed	 and	 created	 the	ENV3	you	 need	 to	 activate	 it.	 This	 can	 be	 done
with

If	you	 like	 to	activate	 it	when	you	start	a	new	terminal,	please	add	 this	 line	 to
your	.bashrc	or	.bash_profile

If	you	use	zsh	please	add	it	to	.zprofile	instead.

3.2	MULTI-VERSION	PYTHON	INSTALLATION	☁�

	Learning	Objectives

Understand	why	we	need	to	worry	about	python	3.7	and	2.7
Use	pyenv	to	support	both	versions
Understand	the	limitations	of	anaconda/conda	for	developers

We	are	living	in	an	interesting	junction	point	in	the	development	of	Python.	In
January	 2019,	 it	 is	 encouraged	 that	 Python	 developers	 swoth	 from	 python
version	2.7	to	python	version	3.7.

However	there	may	be	the	requirement	when	you	still	need	to	develop	code	not
only	in	python	3.7	but	also	in	python	2.7.	To	facilitate	this	multi-python	version
development,	the	best	tool	we	know	about	capable	of	doing	so	is	pyenv.	We	will
explain	you	in	this	section	how	to	install	both	versions	with	the	help	of	pyenv.

Python	 is	 easy	 to	 install	 and	very	good	 instructions	 for	most	platforms	can	be
found	on	the	python.org	Web	page.	We	see	two	different	versions:

$	cd	~

$	conda	create	-n	ENV3	python=3.7.4

$	conda	activate	ENV3

$	conda	install	-c	anaconda	pip

$	conda	deactivate	ENV3

$	conda	activate	ENV3

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-install-pyenv.md

Python	2.7.16
Python	3.7.4

To	manage	python	modules,	it	is	useful	to	have	pip	package	installation	tool	on
your	system.

We	 assume	 that	 you	 have	 a	 computer	 with	 python	 installed.	 The	 version	 of
python	however	may	not	be	the	newest	version.	Please	check	with

which	version	of	python	you	run.	If	it	is	not	the	newest	version,	we	use	pyenv	to
install	a	newer	version	so	you	do	not	effect	 the	default	version	of	python	from
your	system.

3.2.1	Disabling	wrong	python	installs

While	working	with	students	we	have	seen	at	times	that	they	take	other	classes
either	 at	 universities	 or	 online	 that	 teach	 them	 how	 to	 program	 in	 python.
Unfortunately,	 they	 seem	 to	 often	 ignore	 to	 teach	 you	 how	 to	 properly	 install
Python.	I	just	recently	had	a	students	that	had	installed	python	7	different	times
on	his	macOS	machine,	while	another	student	had	3	different	installations,	all	of
which	 conflicted	 with	 each	 other	 as	 they	 were	 not	 set	 up	 properly	 and	 the
students	 did	 not	 even	 realize	 that	 they	were	 using	 Python	 incorrectly	 on	 their
computer	due	to	setup	issues	and	conflicting	libraries.

We	recommend	that	you	inspect	if	you	have	a	files	such	as	~/.bashrc	or	~/.bashrc_profile
in	your	home	directory	and	identify	if	it	activates	various	versions	of	python	on
your	computer.	If	so	you	could	try	to	deactivate	them	while	out-commenting	the
various	 versions	with	 the	 #	 character	 at	 the	 beginning	 of	 the	 line,	 start	 a	 new
terminal	 and	 see	 if	 the	 terminal	 shell	 still	 works.	 Than	 you	 can	 follow	 our
instructions	here	while	using	an	install	on	pyenv.

3.2.2	Managing	2.7	and	3.7	Python	Versions	without	Pyenv

If	you	need	to	have	more	than	one	python	version	installed	and	do	not	want	or
can	use	pyenv,	we	recommend	you	download	and	install	python	2.7.16	and	3.7.4
from	python.org	(https://www.python.org/downloads/)

$	python	--version

https://pypi.python.org/pypi/pip
https://www.python.org/downloads/

YOu	can	than	use	either	python2	or	python3	to	invoke	the	python	interpreter.

3.2.3	Managing	Multiple	Python	Versions	with	Pyenv

Python	 has	 several	 versions	 that	 are	 used	 by	 the	 community.	 This	 includes
Python	2	and	Python	3,	but	all	different	management	of	the	python	libraries.	As
each	OS	may	have	their	own	version	of	python	installed.	It	is	recommended	that
you	not	modify	that	version.	Instead	you	may	want	to	create	a	localized	python
installation	 that	 you	 as	 a	 user	 can	 modify.	 To	 do	 that	 we	 recommend	 pyenv.
Pyenv	 allows	 users	 to	 switch	 between	 multiple	 versions	 of	 Python
(https://github.com/yyuu/pyenv).	To	summarize:

users	to	change	the	global	Python	version	on	a	per-user	basis;
users	to	enable	support	for	per-project	Python	versions;
easy	version	changes	without	complex	environment	variable	management;
to	search	installed	commands	across	different	python	versions;
integrate	with	tox	(https://tox.readthedocs.io/).

To	install	pyenv	on	your	system	you	can	use	the	command

Now	you	can	install	different	python	versions	on	your	system	such	as	python	2.7
and	3.7	with	a	few	commands:

To	 automatically	 access	 them	 from	your	 shell	we	 integrate	 them	 into	 bash	 by
editing	 the	 bash	 configuration	 files.	Make	 sure	 that	 on	 Linux	 you	 add	 to	 the	
~/.bashrc	file	and	on	macOS	to	the	file	~/.bash_profile	or	.zprofile.

$	curl	https://pyenv.run	|	bash

$	pyenv	install	3.7.4

$	pyenv	install	2.7.16

$	pyenv	virtualenv	3.7.4	ENV3

$	pyenv	virtualenv	2.7.16	ENV2

export	PYENV_ROOT="$HOME/.pyenv"

export	PATH="$PYENV_ROOT/bin:$PATH"

export	PYENV_VIRTUALENV_DISABLE_PROMPT=1

eval	"$(pyenv	init	-)"

eval	"$(pyenv	virtualenv-init	-)"

__pyenv_version_ps1()	{

		local	ret=$?;

		output=$(pyenv	version-name)

		if	[[!	-z	$output]];	then

				echo	-n	"($output)"

		fi

		return	$ret;

}

https://github.com/yyuu/pyenv
https://tox.readthedocs.io/

We	recommend	that	you	do	this	towards	the	end	of	your	file.	Than	look	up	our
convenience	methods	to	set	an	ALIAS	and	install	Python	3.7.4	via	pyenv

Next	we	recommend	to	update	pip

3.2.3.1	Installation	pyenv	via	Homebrew

On	macOS	you	can	install	pyenv	also	via	Homebrew.	Before	installing	anything
on	 your	 computer	make	 sure	 you	 have	 enough	 space.	Use	 in	 the	 terminal	 the
command:

which	gives	your	 an	overview	of	your	 file	 system.	 If	you	do	not	have	enough
space,	please	make	sure	you	free	up	unused	files	from	your	drive.

In	 many	 occasions	 it	 is	 beneficial	 to	 use	 readline	 as	 it	 provides	 nice	 editing
features	for	the	terminal	and	xz	for	completion.	First,	make	sure	you	have	xcode
installed:

On	Mojave	you	will	get	an	error	that	zlib	is	not	installed.	THis	is	due	to	that	the
header	files	are	not	properly	installed.	To	do	this	you	can	say

Next	 install	 homebrew,	 pyenv,	 pyenv-virtualenv	 and	 pyenv-virtualwrapper.
Additionally	install	readline	and	some	compression	tools:

PS1="\$(__pyenv_version_ps1)	${PS1}"

alias	ENV2="pyenv	activate	ENV2"

alias	ENV3="pyenv	activate	ENV3"

ENV3

$	ENV2

$	pip	install	pip	-U

$	ENV3

$	pip	install	pip	-U

$	df	-h

$	xcode-select	--install

$	sudo	installer	-pkg	/Library/Developer/CommandLineTools/Packages/macOS_SDK_headers_for_macOS_10.14.pkg	-target	/

$	/usr/bin/ruby	-e	"$(curl	-fsSL	https://raw.githubusercontent.com/Homebrew/install/master/install)"

$	brew	update

$	brew	install	readline	xz

To	install	pyenv	with	homebrew	execute	in	the	terminal:

3.2.3.2	Install	pyenv	on	Ubuntu	18.04

The	following	steps	will	install	pyenv	in	a	new	ubuntu	18.04	distribution.

Start	 up	 a	 terminal	 and	 execute	 in	 the	 terminal	 the	 following	 commands.	We
recommend	 that	 you	 do	 it	 one	 command	 at	 a	 time	 so	 you	 can	 observe	 if	 the
command	succeeds:

You	can	also	install	pyenv	using	curl	command	in	following	way:

Then	install	its	dependencies:

Now	 that	 you	 have	 installed	 pyenv	 it	 is	 not	 yet	 activated	 in	 your	 current
terminal.	The	easiest	thing	to	do	is	to	start	a	new	terminal	and	typ	in:

If	you	see	a	response	pyenv	is	installed	and	you	can	proceed	with	the	next	steps.

Please	remember	whenever	you	modify	.bashrc	or	.bash_profile	or	.zprofile	you	need	to
start	a	new	terminal.

3.2.3.3	Using	pyenv

3.2.3.3.1	Using	pyenv	to	Install	Different	Python	Versions

brew	install	pyenv	pyenv-virtualenv	pyenv-virtualenvwrapper

$	sudo	apt-get	update

$	sudo	apt-get	install	git	python-pip	make	build-essential	libssl-dev

$	sudo	apt-get	install	zlib1g-dev	libbz2-dev	libreadline-dev	libsqlite3-dev

$	sudo	pip	install	virtualenvwrapper

$	git	clone	https://github.com/yyuu/pyenv.git	~/.pyenv

$	git	clone	https://github.com/pyenv/pyenv-virtualenv.git	~/.pyenv/plugins/pyenv-virtualenv

$	git	clone	https://github.com/yyuu/pyenv-virtualenvwrapper.git	~/.pyenv/plugins/pyenv-virtualenvwrapper

$	echo	'export	PYENV_ROOT="$HOME/.pyenv"'	>>	~/.bashrc

$	echo	'export	PATH="$PYENV_ROOT/bin:$PATH"'	>>	~/.bashrc

$	curl	-L	https://raw.githubusercontent.com/yyuu/pyenv-installer/master/bin/pyenv-installer	|	bash

$	sudo	apt-get	update	&&	sudo	apt-get	upgrade

$	sudo	apt-get	install	-y	make	build-essential	libssl-dev

$	sudo	apt-get	install	-y	zlib1g-dev	libbz2-dev	libreadline-dev	libsqlite3-dev

$	sudo	apt-get	install	-y	wget	curl	llvm	libncurses5-dev	git

$	which	pyenv

Pyenv	 provides	 a	 large	 list	 of	 different	 python	 versions.	 To	 see	 the	 entire	 list
please	use	the	command:

However,	 for	us	we	only	need	 to	worry	about	python	2.7.16	and	python	3.7.4.
You	 can	 now	 install	 different	 versions	 of	 python	 into	 your	 local	 environment
with	the	following	commands:

You	can	set	the	global	python	default	version	with:

Type	the	following	to	determine	which	version	you	activated:

Type	the	following	to	determine	which	versions	you	have	available:

Associate	 a	 specific	 environment	 name	with	 a	 certain	 python	 version,	 use	 the
following	commands:

In	 the	 example,	 ENV2	 would	 represent	 python	 2.7.16	 while	 ENV3	 would
represent	python	3.7.4.	Often	it	is	easier	to	type	the	alias	rather	than	the	explicit
version.

3.2.3.3.2	Switching	Environments

After	 setting	 up	 the	 different	 environments,	 switching	 between	 them	 is	 now
easy.	Simply	use	the	following	commands:

To	make	it	even	easier,	you	can	add	the	following	lines	to	your	.bash_profile	or	or	

$	pyenv	install	-l

$	pyenv	update

$	pyenv	install	2.7.16

$	pyenv	install	3.7.4

$	pyenv	global	3.7.4

$	pyenv	version

$	pyenv	versions

$	pyenv	virtualenv	2.7.16	ENV2

$	pyenv	virtualenv	3.7.4	ENV3

(2.7.16)	$	pyenv	activate	ENV2

(ENV2)	$	pyenv	activate	ENV3

(ENV3)	$	pyenv	activate	ENV2

(ENV2)	$	pyenv	deactivate	ENV2

(2.7.16)	$

.zprofile	file:

If	 you	 start	 a	 new	 terminal,	 you	 can	 switch	 between	 the	 different	 versions	 of
python	simply	by	typing:

3.2.3.4	Updating	Python	Version	List

Pyenv	maintains	locally	a	list	of	available	python	versions.	To	see	the	list	use	the
command

You	will	see	the	updated	list.

3.2.3.4.1	Updating	to	a	new	version	of	Python	with	pyenv

Naturally	 python	 itself	 evolves	 and	 new	 versions	 will	 become	 available	 via
pyenv.	To	facilitate	such	a	new	version	you	need	to	first	install	it	into	pyenv.	Let
us	 assume	 you	 had	 an	 old	 version	 of	 python	 installed	 onto	 the	 ENV3
environment.	Than	you	need	to	execute	the	following	steps:

With	the	pi	install	command,	we	make	sure	we	have	the	newest	version	of	pip.
In	case	you	get	an	error,	you	may	have	to	update	xcode	as	follows	and	try	again:

After	you	installed	it	you	can	activate	it	by	typing	ENV3.	Naturally	this	requires	that
you	added	it	to	your	bash	environment	as	discussed	in	Section	1.1.1.8.	⷏�

3.2.4	Anaconda	and	Miniconda	and	Conda

alias	ENV2="pyenv	activate	ENV2"

alias	ENV3="pyenv	activate	ENV3"

$	ENV2

$	ENV3

$	pyenv	update

$	pyenv	install	-l

$	pyenv	deactivate

$	pyenv	uninstall	ENV3

$	pyenv	install	3.7.4

$	pyenv	virtualenv	3.7.4	ENV3

$	ENV3

$	pip	install	pip	-U

xcode-select	--install

While	 in	others	 on	 the	 internet	 or	 in	your	 classes	may	have	 taught	 you	 to	use
anaconda,	We	will	avoid	it	as	it	has	several	disadvantages	for	edevelopers.	The
reason	for	this	is	that	it	installs	many	packages	that	you	are	likely	not	to	use.	In
fact	installing	anaconda	on	your	VM	will	waste	space	and	time	and	you	should
look	into	other	installs.

We	do	not	recommend	that	you	use	anaconda	or	miniconda	as	it	may

interfere	with	your	default	python	interpreters	and	setup.

Please	note	that	beginners	to	python	should	always	use	anaconda	or	miniconda
only	after	 they	have	 installed	pyenv	and	use	 it.	For	 this	class	neither	anaconda
nor	miniconda	is	required.	In	fact	we	do	not	recommend	it.	We	keep	this	section
as	we	know	that	other	classes	at	IU	may	use	anaconda.	We	are	not	aware	if	these
classes	teach	you	the	right	way	to	install	it,	with	pyenv.

3.2.4.1	Miniconda

	 This	 section	 about	 miniconda	 is	 experimental	 and	 has	 not	 been
tested.	We	are	looking	for	contributors	that	help	completing	it.	If	you
use	anaconda	or	miniconda	we	recommend	to	manage	it	via	pyenv.

To	install	mini	conda	you	can	use	the	following	commands:

To	activate	use:

To	deactivate	use:

3.2.4.2	Anaconda

	 This	 section	 about	 anaconda	 is	 experimental	 and	 has	 not	 been

$	mkdir	ana

$	cd	ana

$	pyenv	install	miniconda3-latest

$	pyenv	local	miniconda3-latest

$	pyenv	activate	miniconda3-latest

$	conda	create	-n	ana	anaconda

$	source	activate	ana

$	source	deactivate

tested.	We	are	looking	for	contributors	that	help	completing	it.

You	can	add	anaconda	to	your	pyenv	with	the	following	commands:

To	 switch	 more	 easily	 we	 recommend	 that	 you	 use	 the	 following	 in	 your	
.bash_profile	or	.zprofile	file:

Once	you	have	done	this	you	can	easily	switch	to	anaconda	with	the	command:

Terminology	in	anaconda	could	lead	to	confusion.	Thus	we	like	to	point	out	that
the	version	number	of	anaconda	is	unrelated	to	the	python	version.	Furthermore,
anaconda	 uses	 the	 term	 root	 not	 for	 the	 root	 user,	 but	 for	 the	 originating
directory	in	which	the	anaconda	program	is	installed.

In	case	you	like	to	build	your	own	conda	packages	at	a	later	time	we	recommend
that	you	install	the	conda-build	package:

When	executing:

you	will	see	after	the	install	completed	the	anaconda	versions	installed:

Let	us	now	create	virtualenv	for	anaconda:

To	activate	it	you	can	now	use:

pyenv	install	anaconda3-4.3.1

alias	ANA="pyenv	activate	anaconda3-4.3.1"

$	ANA

$	conda	install	conda-build

$	pyenv	versions

pyenv	versions

system

2.7.16

2.7.16/envs/ENV2

3.7.4

3.7.4/envs/ENV3

ENV2

ENV3

*	anaconda3-4.3.1	(set	by	PYENV_VERSION	environment	variable)

$	pyenv	virtualenv	anaconda3-4.3.1	ANA

$	pyenv	ANA

However,	 anaconda	may	modify	 your	 .bashrc	 or	 .bash_profile	 or	 or	 .zprofile	 files	 and
may	 result	 in	 incompatibilities	with	 other	 python	 versions.	 For	 this	 reason	we
recommend	not	 to	use	it.	 If	you	find	ways	to	get	 it	 to	work	reliably	with	other
versions,	please	let	us	know	and	we	update	this	tutorial.

3.2.5	Exercises

E.Python.Install.1:

Install	Python	3.7.4

E.Python.Install.1:

Write	installation	instructions	for	an	operating	system	of	your	choice
and	add	to	this	documentation.

E.Python.Install.2:

Replicate	 the	 steps	 to	 install	 pyenv,	 so	 you	 can	 type	 in	 ENV2	 and
ENV3	in	your	terminals	to	switch	between	python	2	and	3.

E.Python.Install.3:

Why	 do	 you	 not	 want	 to	 use	 generally	 anaconda	 for	 cloud
computing?	When	is	it	ok	to	use	anaconda?

4	FIRST	STEPS

4.1	INTERACTIVE	PYTHON	☁�
Python	can	be	used	interactively.	You	can	enter	the	interactive	mode	by	entering
the	interactive	loop	by	executing	the	command:

You	will	see	something	like	the	following:

The	 >>>	 is	 the	 prompt	 used	 by	 the	 interpreter.	 This	 is	 similar	 to	 bash	 where
commonly	$	is	used.

Sometimes	 it	 is	 convenient	 to	 show	 the	 prompt	when	 illustrating	 an	 example.
This	 is	 to	 provide	 some	 context	 for	 what	 we	 are	 doing.	 If	 you	 are	 following
along	you	will	not	need	to	type	in	the	prompt.

This	interactive	python	process	does	the	following:

read	your	input	commands
evaluate	your	command
print	the	result	of	evaluation
loop	back	to	the	beginning.

This	 is	 why	 you	 may	 see	 the	 interactive	 loop	 referred	 to	 as	 a	REPL:	Read-
Evaluate-Print-Loop.

4.1.1	REPL	(Read	Eval	Print	Loop)

There	 are	 many	 different	 types	 beyond	 what	 we	 have	 seen	 so	 far,	 such	 as
dictionariess,	lists,	sets.	One	handy	way	of	using	the	interactive	python	is	to	get
the	type	of	a	value	using	type():

$	python

$	python

Python	3.7.1	(default,	Nov	24	2018,	14:27:15)

[Clang	10.0.0	(clang-1000.11.45.5)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-interactive.md

You	can	also	ask	for	help	about	something	using	help():

Using	help()	opens	up	a	help	message	within	a	pager.	To	navigate	you	can	use
the	spacebar	to	go	down	a	page	w	to	go	up	a	page,	the	arrow	keys	to	go	up/down
line-by-line,	or	q	to	exit.

4.1.2	Interpreter

Although	the	interactive	mode	provides	a	convenient	tool	to	test	things	out	you
will	see	quickly	that	for	our	class	we	want	to	use	the	python	interpreter	from	the
commandline.	Let	us	assume	the	program	is	called	prg.py.	Once	you	have	written
it	in	that	file	you	simply	can	call	it	with

It	is	important	to	name	the	program	with	meaningful	names.

4.1.3	Python	3	Features	in	Python	2

In	 this	 course	we	want	 to	 be	 able	 to	 seamlessly	 switch	 between	 python	 2	 and
python	3.	Thus	it	is	convenient	from	the	start	to	use	python	3	syntax	when	it	is
supported	also	in	python	2.	One	of	the	most	used	functions	is	the	print	statement
that	has	in	python	3	parentheses.	To	enable	it	in	python	2	you	just	need	to	import
this	function:

The	first	of	these	imports	allows	us	to	use	the	print	function	to	output	text	to	the
screen,	 instead	 of	 the	 print	 statement,	 which	 Python	 2	 uses.	 This	 is	 simply	 a
design	decision	that	better	reflects	Python’s	underlying	philosophy.

Other	functions	such	as	the	division	also	behave	differently.	Thus	we	use

>>>	type(42)

<type	'int'>

>>>	type('hello')

<type	'str'>

>>>	type(3.14)

<type	'float'>

>>>	help(int)

>>>	help(list)

>>>	help(str)

$	python	prg.py

from	__future__	import	print_function,	division

from	__future__	import	division

https://www.python.org/dev/peps/pep-3105/

This	import	makes	sure	that	the	division	operator	behaves	in	a	way	a	newcomer
to	the	language	might	find	more	intuitive.	In	Python	2,	division	/	is	floor	division
when	the	arguments	are	integers,	meaning	that	the	following

In	Python	3,	division	/	is	a	floating	point	division,	thus

4.2	EDITORS	☁�
This	section	is	meant	to	give	an	overview	of	the	python	editing	tools	needed	for
doing	 for	 this	 course.	 There	 are	 many	 other	 alternatives,	 however,	 we	 do
recommend	to	use	PyCharm.

4.2.1	Pycharm

PyCharm	 is	 an	 Integrated	 Development	 Environment	 (IDE)	 used	 for
programming	 in	 Python.	 It	 provides	 code	 analysis,	 a	 graphical	 debugger,	 an
integrated	unit	tester,	integration	with	git.

	Python	8:56	Pycharm

4.2.2	Python	in	45	minutes

An	additional	community	video	about	the	Python	programming	language	that	we
found	on	the	internet.	Naturally	there	are	many	alternatives	to	this	video,	but	the
video	is	probably	a	good	start.	It	also	uses	PyCharm	which	we	recommend.

	Python	43:16	PyCharm

How	much	you	want	to	understand	of	python	is	actually	a	bit	up	to	you.	While
its	good	 to	know	classes	and	 inheritance,	you	may	be	able	 for	 this	class	 to	get
away	without	using	it.	However,	we	do	recommend	that	you	learn	it.

PyCharm	Installation:	Method	1:	PyCharm	Installation	on	ubuntu	using	umake

(5	/	2	==	2)	is	True

(5	/	2	==	2.5)	is	True

https://www.python.org/dev/peps/pep-0238/
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-editor.md
https://youtu.be/X8ZpbZweJcw
https://www.youtube.com/watch?v=N4mEzFDjqtA

Once	 umake	 command	 is	 run,	 use	 the	 next	 command	 to	 install	 Pycharm
community	edition:

If	you	want	to	remove	PyCharm	installed	using	umake	command,	use	this:

Method	2:	PyCharm	installation	on	ubuntu	using	PPA

PyCharm	 also	 has	 a	 Professional	 (paid)	 version	 which	 can	 be	 installed	 using
following	command:

Once	installed,	go	to	your	VM	dashboard	and	search	for	PyCharm.

4.3	GOOGLE	COLAB	☁�
In	 this	section	we	are	going	to	 introduce	you,	how	to	use	Google	Colab	to	run
deep	learning	models.

4.3.1	Introduction	to	Google	Colab

This	video	contains	the	introduction	to	Google	Colab.	In	this	section	we	will	be
learning	how	to	start	a	Google	Colab	project.

4.3.2	Programming	in	Google	Colab

In	this	video	we	will	learn	how	to	create	a	simple,	Colab	Notebook.

sudo	add-apt-repository	ppa:ubuntu-desktop/ubuntu-make

sudo	apt-get	update

sudo	apt-get	install	ubuntu-make

umake	ide	pycharm

umake	-r	ide	pycharm

sudo	add-apt-repository	ppa:mystic-mirage/pycharm

sudo	apt-get	update

sudo	apt-get	install	pycharm-community

sudo	apt-get	install	pycharm

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/google-colab/python-google-colab.md
https://drive.google.com/file/d/1vz2_VaXCAae-9luzcrIuP_ugMmKJIy7w/view?usp=sharing

Required	Installations

4.3.3	Benchamrking	in	Google	Colab	with	Cloudmesh

In	 this	 video	 we	 learn	 how	 to	 do	 a	 basic	 benchmark	 with	 Cloudmesh	 tools.
Cloudmesh	StopWatch	will	be	used	in	this	tutorial.

Required	Installations

pip	install	numpy

pip	install	numpy

pip	install	cloudmesh-installer

pip	install	cloudmesh-common

https://drive.google.com/file/d/18mGVxgydx1TDdb4AYD8qb1To8rkSLS-H/view?usp=sharing
https://drive.google.com/file/d/1Ujs0XjzCTwZgmx-ADM5zx9cS5iplXfIu/view?usp=sharing

5	LANGUAGE

5.1	LANGUAGE	☁�

5.1.1	Statements	and	Strings

Let	us	explore	the	syntax	of	Python	while	starting	with	a	print	statement

This	will	print	on	the	terminal

The	 print	 function	 was	 given	 a	 string	 to	 process.	 A	 string	 is	 a	 sequence	 of
characters.	 A	 character	 can	 be	 a	 alphabetic	 (A	 through	 Z,	 lower	 and	 upper
case),	 numeric	 (any	 of	 the	 digits),	 white	 space	 (spaces,	 tabs,	 newlines,	 etc),
syntactic	directives	(comma,	colon,	quotation,	exclamation,	etc),	and	so	forth.	A
string	is	just	a	sequence	of	the	character	and	typically	indicated	by	surrounding
the	characters	in	double	quotes.

Standard	output	is	discussed	in	the	Section	Linux.

So,	 what	 happened	 when	 you	 pressed	 Enter?	 The	 interactive	 Python	 program
read	the	line	print	("Hello	world	from	Python!"),	split	it	into	the	print	statement	and	the	"Hello	
world	from	Python!"	string,	and	then	executed	the	line,	showing	you	the	output.

5.1.2	Comments

Comments	in	python	are	followed	by	a	#:

5.1.3	Variables

You	can	store	data	into	a	variable	to	access	it	later.	For	instance:

print("Hello	world	from	Python!")

Hello	world	from	Python!

#	This	is	a	comment

hello	=	'Hello	world	from	Python!'

print(hello)

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python.md

This	will	print	again

5.1.4	Data	Types

5.1.4.1	Booleans

A	boolean	 is	 a	 value	 that	 can	 have	 the	 values	 True	 or	 False.	 You	 can	 combine
booleans	with	boolean	operators	such	as	and	and	or

5.1.4.2	Numbers

The	interactive	interpreter	can	also	be	used	as	a	calculator.	For	instance,	say	we
wanted	to	compute	a	multiple	of	21:

We	saw	here	the	print	statement	again.	We	passed	in	the	result	of	the	operation
21	 *	 2.	An	 integer	 (or	 int)	 in	 Python	 is	 a	 numeric	 value	without	 a	 fractional
component	(those	are	called	floating	point	numbers,	or	float	for	short).

The	mathematical	operators	 compute	 the	 related	mathematical	operation	 to	 the
provided	numbers.	Some	operators	are:

Operator Function
* multiplication
/ division
+ addition
- subtraction
** exponent

Exponentiation	xy	is	written	as	x**y	is	x	to	the	yth	power.

Hello	world	from	Python!

print(True	and	True)	#	True

print(True	and	False)	#	False

print(False	and	False)	#	False

print(True	or	True)	#	True

print(True	or	False)	#	True

print(False	or	False)	#	False

print(21	*	2)	#	42

You	can	combine	floats	and	ints:

Note	that	operator	precedence	is	important.	Using	parenthesis	to	indicate	affect
the	order	of	operations	gives	a	difference	results,	as	expected:

5.1.5	Module	Management

A	module	allows	you	to	logically	organize	your	Python	code.	Grouping	related
code	into	a	module	makes	the	code	easier	to	understand	and	use.	A	module	is	a
Python	object	with	arbitrarily	named	attributes	that	you	can	bind	and	reference.
A	module	 is	 a	 file	 consisting	of	Python	 code.	A	module	 can	define	 functions,
classes	and	variables.	A	module	can	also	include	runnable	code.

5.1.5.1	Import	Statement

When	the	interpreter	encounters	an	import	statement,	it	imports	the	module	if	the
module	is	present	in	the	search	path.	A	search	path	is	a	list	of	directories	that	the
interpreter	 searches	 before	 importing	 a	 module.	 The	 from…import	 Statement
Python’s	 from	statement	 lets	you	 import	specific	attributes	 from	a	module	 into
the	current	namespace.	It	is	preferred	to	use	for	each	import	its	own	line	such	as:

When	the	interpreter	encounters	an	import	statement,	it	imports	the	module	if	the
module	is	present	in	the	search	path.	A	search	path	is	a	list	of	directories	that	the
interpreter	searches	before	importing	a	module.

5.1.5.2	The	from	…	import	Statement

Python’s	 from	statement	 lets	you	 import	specific	attributes	 from	a	module	 into
the	current	namespace.	The	from	…	import	has	the	following	syntax:

print(3.14	*	42	/	11	+	4	-	2)	#	13.9890909091

print(2**3)	#	8

print(3.14	*	(42	/	11)	+	4	-	2)	#	11.42

print(1	+	2	*	3	-	4	/	5.0)	#	6.2

print((1	+	2)	*	(3	-	4)	/	5.0)	#	-0.6

import	numpy

import	matplotlib

from	datetime	import	datetime

5.1.6	Date	Time	in	Python

The	datetime	module	supplies	classes	for	manipulating	dates	and	times	in	both
simple	and	complex	ways.	While	date	and	time	arithmetic	is	supported,	the	focus
of	 the	 implementation	 is	 on	 efficient	 attribute	 extraction	 for	 output	 formatting
and	 manipulation.	 For	 related	 functionality,	 see	 also	 the	 time	 and	 calendar
modules.

The	 import	 Statement	 You	 can	 use	 any	 Python	 source	 file	 as	 a	 module	 by
executing	an	import	statement	in	some	other	Python	source	file.

This	module	offers	a	generic	date/time	string	parser	which	is	able	to	parse	most
known	formats	to	represent	a	date	and/or	time.

pandas	 is	 an	 open	 source	 Python	 library	 for	 data	 analysis	 that	 needs	 to	 be
imported.

Create	a	string	variable	with	the	class	start	time

Convert	the	string	to	datetime	format

Creating	a	list	of	strings	as	dates

Convert	Class_dates	strings	into	datetime	format	and	save	the	list	into	variable	a

Use	parse()	to	attempt	to	auto-convert	common	string	formats.	Parser	must	be	a

from	datetime	import	datetime

from	dateutil.parser	import	parse

import	pandas	as	pd

fall_start	=	'08-21-2018'

datetime.strptime(fall_start,	'%m-%d-%Y')	\#

datetime.datetime(2017,	8,	21,	0,	0)

class_dates	=	[

				'8/25/2017',

				'9/1/2017',

				'9/8/2017',

				'9/15/2017',

				'9/22/2017',

				'9/29/2017']

a	=	[datetime.strptime(x,	'%m/%d/%Y')	for	x	in	class_dates]

string	or	character	stream,	not	list.

Use	parse()	on	every	element	of	the	Class_dates	string.

Use	parse,	but	designate	that	the	day	is	first.

Create	 a	dataframe.A	DataFrame	 is	 a	 tabular	data	 structure	 comprised	of	 rows
and	 columns,	 akin	 to	 a	 spreadsheet,	 database	 table.	 DataFrame	 as	 a	 group	 of
Series	objects	that	share	an	index	(the	column	names).

Convert	df[`date`]	from	string	to	datetime

5.1.7	Control	Statements

5.1.7.1	Comparison

parse(fall_start)	#	datetime.datetime(2017,	8,	21,	0,	0)

[parse(x)	for	x	in	class_dates]

#	[datetime.datetime(2017,	8,	25,	0,	0),

#		datetime.datetime(2017,	9,	1,	0,	0),

#		datetime.datetime(2017,	9,	8,	0,	0),

#		datetime.datetime(2017,	9,	15,	0,	0),

#		datetime.datetime(2017,	9,	22,	0,	0),

#		datetime.datetime(2017,	9,	29,	0,	0)]

parse	(fall_start,	dayfirst=True)

#	datetime.datetime(2017,	8,	21,	0,	0)

import	pandas	as	pd

data	=	{

		'dates':	[

				'8/25/2017	18:47:05.069722',

				'9/1/2017	18:47:05.119994',

				'9/8/2017	18:47:05.178768',

				'9/15/2017	18:47:05.230071',

				'9/22/2017	18:47:05.230071',

				'9/29/2017	18:47:05.280592'],

		'complete':	[1,	0,	1,	1,	0,	1]}

df	=	pd.DataFrame(

		data,

		columns	=	['dates','complete'])

print(df)

#																		dates		complete

#		0		8/25/2017	18:47:05.069722	1

#		1			9/1/2017	18:47:05.119994	0

#		2			9/8/2017	18:47:05.178768	1

#		3		9/15/2017	18:47:05.230071	1

#		4		9/22/2017	18:47:05.230071	0

#		5		9/29/2017	18:47:05.280592	1

import	pandas	as	pd

pd.to_datetime(df['dates'])

#	0			2017-08-25	18:47:05.069722

#	1			2017-09-01	18:47:05.119994

#	2			2017-09-08	18:47:05.178768

#	3			2017-09-15	18:47:05.230071

#	4			2017-09-22	18:47:05.230071

#	5			2017-09-29	18:47:05.280592

#	Name:	dates,	dtype:	datetime64[ns]

Computer	 programs	 do	 not	 only	 execute	 instructions.	 Occasionally,	 a	 choice
needs	to	be	made.	Such	as	a	choice	is	based	on	a	condition.	Python	has	several
conditional	operators:

Operator Function
> greater	than
< smaller	than
== equals
!= is	not

Conditions	are	always	combined	with	variables.	A	program	can	make	a	choice
using	the	if	keyword.	For	example:

In	 this	 example,	You	 guessed	 correctly!	 will	 only	 be	 printed	 if	 the	 variable	 x
equals	 to	 four.	 Python	 can	 also	 execute	multiple	 conditions	 using	 the	 elif	 and
else	keywords.

5.1.7.2	Iteration

To	 repeat	 code,	 the	 for	 keyword	 can	 be	 used.	 For	 example,	 to	 display	 the
numbers	from	1	to	10,	we	could	write	something	like	this:

The	second	argument	 to	 range,	11,	 is	not	 inclusive,	meaning	 that	 the	 loop	will
only	get	to	10	before	it	finishes.	Python	itself	starts	counting	from	0,	so	this	code
will	also	work:

x	=	int(input("Guess	x:"))

if	x	==	4:

			print('Correct!')

x	=	int(input("Guess	x:"))

if	x	==	4:

				print('Correct!')

elif	abs(4	-	x)	==	1:

				print('Wrong,	but	close!')

else:

				print('Wrong,	way	off!')

for	i	in	range(1,	11):

			print('Hello!')

for	i	in	range(0,	10):

			print(i	+	1)

In	fact,	the	range	function	defaults	to	starting	value	of	0,	so	it	is	equivalent	to:

We	can	also	nest	loops	inside	each	other:

In	 this	 case	 we	 have	 two	 nested	 loops.	 The	 code	 will	 iterate	 over	 the	 entire
coordinate	range	(0,0)	to	(9,9)

5.1.8	Datatypes

5.1.8.1	Lists

see:	https://www.tutorialspoint.com/python/python_lists.htm

Lists	 in	Python	are	ordered	sequences	of	elements,	where	each	element	can	be
accessed	using	a	0-based	index.

To	define	a	list,	you	simply	list	its	elements	between	square	brackets	‘[]’:

You	can	also	use	a	negative	 index	 if	you	want	 to	start	counting	elements	from
the	 end	of	 the	 list.	Thus,	 the	 last	 element	 has	 index	 -1,	 the	 second	 before	 last
element	has	index	-2	and	so	on:

Python	also	allows	you	to	take	whole	slices	of	the	list	by	specifying	a	beginning
and	end	of	the	slice	separated	by	a	colon

for	i	in	range(10):

			print(i	+	1)

for	i	in	range(0,10):

				for	j	in	range(0,10):

								print(i,'	',j)

names	=	[

		'Albert',

		'Jane',

		'Liz',

		'John',

		'Abby']

#	access	the	first	element	of	the	list

names[0]

#	'Albert'

#	access	the	third	element	of	the	list

names[2]

#	'Liz'

#	access	the	last	element	of	the	list

names[-1]

#	'Abby'

#	access	the	second	last	element	of	the	list

names[-2]

#	'John'

https://www.tutorialspoint.com/python/python_lists.htm

As	you	can	see	from	the	example,	the	starting	index	in	the	slice	is	inclusive	and
the	ending	one,	exclusive.

Python	provides	a	variety	of	methods	for	manipulating	the	members	of	a	list.

You	can	add	elements	with	append’:

As	you	can	see,	the	elements	in	a	list	need	not	be	unique.

Merge	two	lists	with	‘extend’:

Find	the	index	of	the	first	occurrence	of	an	element	with	‘index’:

Remove	elements	by	value	with	‘remove’:

Remove	elements	by	index	with	‘pop’:

Notice	that	pop	returns	the	element	being	removed,	while	remove	does	not.

If	you	are	familiar	with	stacks	from	other	programming	languages,	you	can	use
insert	and	‘pop’:

#	the	middle	elements,	excluding	first	and	last

names[1:-1]

#	['Jane',	'Liz',	'John']

names.append('Liz')

names

#	['Albert',	'Jane',	'Liz',

#		'John',	'Abby',	'Liz']

names.extend(['Lindsay',	'Connor'])

names

#	['Albert',	'Jane',	'Liz',	'John',

#		'Abby',	'Liz',	'Lindsay',	'Connor']

names.index('Liz')	\#	2

names.remove('Abby')

names

#	['Albert',	'Jane',	'Liz',	'John',

#		'Liz',	'Lindsay',	'Connor']

names.pop(1)

#	'Jane'

names

#	['Albert',	'Liz',	'John',

#		'Liz',	'Lindsay',	'Connor']

names.insert(0,	'Lincoln')

names

#	['Lincoln',	'Albert',	'Liz',

#		'John',	'Liz',	'Lindsay',	'Connor']

names.pop()

The	Python	documentation	contains	a	full	list	of	list	operations.

To	 go	 back	 to	 the	 range	 function	 you	 used	 earlier,	 it	 simply	 creates	 a	 list	 of
numbers:

5.1.8.2	Sets

Python	lists	can	contain	duplicates	as	you	saw	previously:

When	we	do	not	want	this	to	be	the	case,	we	can	use	a	set:

Keep	in	mind	that	the	set	is	an	unordered	collection	of	objects,	thus	we	can	not
access	them	by	index:

However,	we	can	convert	a	set	to	a	list	easily:

Notice	that	in	this	case,	the	order	of	elements	in	the	new	list	matches	the	order	in
which	the	elements	were	displayed	when	we	create	the	set.	We	had
set(['Lincoln',	'John',	'Albert',	'Liz',	'Lindsay'])

and	now	we	have
['Lincoln',	'John',	'Albert',	'Liz',	'Lindsay'])

#	'Connor'

names

#	['Lincoln',	'Albert',	'Liz',

#		'John',	'Liz',	'Lindsay']

range(10)

#	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

range(2,	10,	2)

#	[2,	4,	6,	8]

names	=	['Albert',	'Jane',	'Liz',

									'John',	'Abby',	'Liz']

unique_names	=	set(names)

unique_names

#	set(['Lincoln',	'John',	'Albert',	'Liz',	'Lindsay'])

unique_names[0]

#	Traceback	(most	recent	call	last):

#			File	"<stdin>",	line	1,	in	<module>

#			TypeError:	'set'	object	does	not	support	indexing

unique_names	=	list(unique_names)

unique_names	[`Lincoln',	`John',	`Albert',	`Liz',	`Lindsay']

unique_names[0]

#	`Lincoln'

https://docs.python.org/2/library/stdtypes.html#set

You	 should	 not	 assume	 this	 is	 the	 case	 in	 general.	 That	 is,	 do	 not	 make	 any
assumptions	about	the	order	of	elements	in	a	set	when	it	is	converted	to	any	type
of	sequential	data	structure.

You	 can	 change	 a	 set’s	 contents	 using	 the	 add,	 remove	 and	 update	 methods
which	 correspond	 to	 the	 append,	 remove	 and	 extend	 methods	 in	 a	 list.	 In
addition	 to	 these,	 set	 objects	 support	 the	 operations	 you	may	 be	 familiar	with
from	mathematical	sets:	union,	intersection,	difference,	as	well	as	operations	 to
check	 containment.	 You	 can	 read	 about	 this	 in	 the	 Python	 documentation	 for
sets.

5.1.8.3	Removal	and	Testing	for	Membership	in	Sets

One	important	advantage	of	a	set	over	a	list	is	that	access	to	elements	is	fast.	 If
you	 are	 familiar	with	 different	 data	 structures	 from	a	Computer	Science	 class,
the	Python	 list	 is	 implemented	by	 an	 array,	while	 the	 set	 is	 implemented	by	 a
hash	table.

We	will	demonstrate	this	with	an	example.	Let	us	say	we	have	a	list	and	a	set	of
the	same	number	of	elements	(approximately	100	thousand):

We	will	 use	 the	 timeit	 Python	module	 to	 time	 100	 operations	 that	 test	 for	 the
existence	of	a	member	in	either	the	list	or	set:

The	 exact	 duration	 of	 the	 operations	 on	 your	 system	will	 be	 different,	 but	 the
take	 away	 will	 be	 the	 same:	 searching	 for	 an	 element	 in	 a	 set	 is	 orders	 of
magnitude	faster	than	in	a	list.	This	is	important	to	keep	in	mind	when	you	work
with	large	amounts	of	data.

5.1.8.4	Dictionaries

import	sys,	random,	timeit

nums_set	=	set([random.randint(0,	sys.maxint)	for	_	in	range(10**5)])

nums_list	=	list(nums_set)

len(nums_set)

#	100000

timeit.timeit('random.randint(0,	sys.maxint)	in	nums',

														setup='import	random;	nums=%s'	%	str(nums_set),	number=100)

#	0.0004038810729980469

timeit.timeit('random.randint(0,	sys.maxint)	in	nums',

														setup='import	random;	nums=%s'	%	str(nums_list),	number=100)

#	0.398054122924804

https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/timeit.html

One	of	the	very	important	data	structures	in	python	is	a	dictionary	also	referred
to	as	dict.

A	dictionary	represents	a	key	value	store:

A	convenient	for	to	print	by	named	attributes	is

This	form	of	printing	with	the	format	statement	and	a	reference	to	data	increases
readability	of	the	print	statements.

You	can	delete	elements	with	the	following	commands:

You	can	iterate	over	a	dict:

5.1.8.5	Dictionary	Keys	and	Values

You	can	retrieve	both	 the	keys	and	values	of	a	dictionary	using	 the	keys()	and
values()	methods	of	the	dictionary,	respectively:

person	=	{

		'Name':	'Albert',

		'Age':	100,

		'Class':	'Scientist'

		}

print("person['Name']:	",	person['Name'])

#	person['Name']:		Albert

print("person['Age']:	",	person['Age'])

#	person['Age']:		100

print("{Name}	{Age}'.format(**data))

del	person['Name']	#	remove	entry	with	key	'Name'

#	person

#	{'Age':	100,	'Class':	'Scientist'}

person.clear()					#	remove	all	entries	in	dict

#	person

#	{}

del	person									#	delete	entire	dictionary

#	person

#	Traceback	(most	recent	call	last):

#		File	"<stdin>",	line	1,	in	<module>

#		NameError:	name	'person'	is	not	defined

person	=	{

		'Name':	'Albert',

		'Age':	100,

		'Class':	'Scientist'

		}

for	item	in	person:

		print(item,	person[item])

#	Age	100

#	Name	Albert

#	Class	Scientist

person.keys()	#	['Age',	'Name',	'Class']

person.values()	#	[100,	'Albert',	'Scientist']

Both	methods	return	lists.	Notice,	however,	that	the	order	in	which	the	elements
appear	 in	 the	 returned	 lists	 (Age,	 Name,	 Class)	 is	 different	 from	 the	 order	 in
which	we	 listed	 the	elements	when	we	declared	 the	dictionary	 initially	 (Name,
Age,	Class).	It	is	important	to	keep	this	in	mind:

	You	cannot	make	any	assumptions	about	the	order	in	which	the
elements	of	a	dictionary	will	be	 returned	by	 the	keys()	and	values()
methods.

However,	you	can	assume	that	if	you	call	keys()	and	values()	in	sequence,	the	order
of	 elements	 will	 at	 least	 correspond	 in	 both	 methods.	 In	 the	 example	 Age
corresponds	to	100,	Name	to	 Albert,	and	Class	to	Scientist,	and	you	will	observe
the	 same	 correspondence	 in	 general	 as	 long	 as	 keys()	 and	 values()	 are	 called	 one
right	after	the	other.

5.1.8.6	Counting	with	Dictionaries

One	application	of	dictionaries	that	frequently	comes	up	is	counting	the	elements
in	a	sequence.	For	example,	say	we	have	a	sequence	of	coin	flips:

The	actual	 list	die_rolls	will	 likely	be	different	when	you	execute	 this	on	your
computer	since	the	outcomes	of	the	die	rolls	are	random.

To	compute	the	probabilities	of	heads	and	tails,	we	could	count	how	many	heads
and	tails	we	have	in	the	list:

In	 addition	 to	 how	 we	 use	 the	 dictionary	 counts	 to	 count	 the	 elements	 of

import	random

die_rolls	=	[

		random.choice(['heads',	'tails'])	for	_	in	range(10)

]

#	die_rolls

#	['heads',	'tails',	'heads',

#		'tails',	'heads',	'heads',

			'tails',	'heads',	'heads',	'heads']

counts	=	{'heads':	0,	'tails':	0}

for	outcome	in	coin_flips:

			assert	outcome	in	counts

			counts[outcome]	+=	1

print('Probability	of	heads:	%.2f'	%	(counts['heads']	/	len(coin_flips)))

#	Probability	of	heads:	0.70

print('Probability	of	tails:	%.2f'	%	(counts['tails']	/	sum(counts.values())))

#	Probability	of	tails:	0.30

coin_flips,	notice	a	couple	things	about	this	example:

1.	 We	 used	 the	 assert	 outcome	 in	 counts	 statement.	 The	 assert	 statement	 in
Python	 allows	 you	 to	 easily	 insert	 debugging	 statements	 in	 your	 code	 to
help	 you	 discover	 errors	 more	 quickly.	 assert	 statements	 are	 executed
whenever	the	internal	Python	__debug__	variable	is	set	to	True,	which	is	always
the	case	unless	you	start	Python	with	the	-O	option	which	allows	you	to	run
optimized	Python.

2.	 When	 we	 computed	 the	 probability	 of	 tails,	 we	 used	 the	 built-in	 sum
function,	which	allowed	us	 to	quickly	 find	 the	 total	number	of	 coin	 flips.
sum	is	one	of	many	built-in	function	you	can	read	about	here.

5.1.9	Functions

You	can	reuse	code	by	putting	it	inside	a	function	that	you	can	call	in	other	parts
of	your	programs.	Functions	are	also	a	good	way	of	grouping	code	that	logically
belongs	 together	 in	 one	 coherent	whole.	A	 function	 has	 a	 unique	 name	 in	 the
program.	Once	you	call	a	function,	it	will	execute	its	body	which	consists	of	one
or	more	lines	of	code:

The	 def	 keyword	 tells	 Python	 we	 are	 defining	 a	 function.	 As	 part	 of	 the
definition,	we	have	the	function	name,	check_triangle,	and	the	parameters	of	the
function	–	variables	that	will	be	populated	when	the	function	is	called.

We	call	the	function	with	arguments	4,	5	and	6,	which	are	passed	in	order	into
the	parameters	a,	b	and	c.	A	function	can	be	called	several	 times	with	varying
parameters.	There	is	no	limit	to	the	number	of	function	calls.

It	 is	 also	 possible	 to	 store	 the	 output	 of	 a	 function	 in	 a	 variable,	 so	 it	 can	 be
reused.

def	check_triangle(a,	b,	c):

return	\

				a	<	b	+	c	and	a	>	abs(b	-	c)	and	\

				b	<	a	+	c	and	b	>	abs(a	-	c)	and	\

				c	<	a	+	b	and	c	>	abs(a	-	b)

				print(check_triangle(4,	5,	6))

def	check_triangle(a,	b,	c):

		return	\

					a	<	b	+	c	and	a	>	abs(b	-	c)	and	\

					b	<	a	+	c	and	b	>	abs(a	-	c)	and	\

					c	<	a	+	b	and	c	>	abs(a	-	b)

https://docs.python.org/2/library/functions.html

5.1.10	Classes

A	class	 is	 an	 encapsulation	 of	 data	 and	 the	 processes	 that	work	 on	 them.	The
data	 is	 represented	 in	member	 variables,	 and	 the	 processes	 are	 defined	 in	 the
methods	of	the	class	(methods	are	functions	inside	the	class).	For	example,	let’s
see	how	to	define	a	Triangle	class:

Python	 has	 full	 object-oriented	 programming	 (OOP)	 capabilities,	 however	 we
can	not	cover	all	of	them	in	this	section,	so	if	you	need	more	information	please
refer	to	the	Python	docs	on	classes	and	OOP.

5.1.11	Modules

Now	write	this	simple	program	and	save	it:

As	a	check,	make	sure	the	file	contains	the	expected	contents	on	the	command
line:

				result	=	check_triangle(4,	5,	6)

				print(result)

class	Triangle(object):

		def	__init__(self,	length,	width,

															height,	angle1,	angle2,	angle3):

					if	not	self._sides_ok(length,	width,	height):

									print('The	sides	of	the	triangle	are	invalid.')

					elif	not	self._angles_ok(angle1,	angle2,	angle3):

									print('The	angles	of	the	triangle	are	invalid.')

					self._length	=	length

					self._width	=	width

					self._height	=	height

					self._angle1	=	angle1

					self._angle2	=	angle2

					self._angle3	=	angle3

	def	_sides_ok(self,	a,	b,	c):

					return	\

									a	<	b	+	c	and	a	>	abs(b	-	c)	and	\

									b	<	a	+	c	and	b	>	abs(a	-	c)	and	\

									c	<	a	+	b	and	c	>	abs(a	-	b)

	def	_angles_ok(self,	a,	b,	c):

					return	a	+	b	+	c	==	180

triangle	=	Triangle(4,	5,	6,	35,	65,	80)

print("Hello	world!")

$	cat	hello.py

print("Hello	world!")

https://docs.python.org/2.7/tutorial/classes.html

To	execute	your	program	pass	the	file	as	a	parameter	to	the	python	command:

Files	 in	 which	 Python	 code	 is	 stored	 are	 called	modules.	 You	 can	 execute	 a
Python	module	form	the	command	line	like	you	just	did,	or	you	can	import	it	in
other	Python	code	using	the	import	statement.

Let	 us	 write	 a	 more	 involved	 Python	 program	 that	 will	 receive	 as	 input	 the
lengths	 of	 the	 three	 sides	 of	 a	 triangle,	 and	will	 output	whether	 they	 define	 a
valid	triangle.	A	triangle	is	valid	if	the	length	of	each	side	is	less	than	the	sum	of
the	lengths	of	the	other	two	sides	and	greater	than	the	difference	of	the	lengths	of
the	other	two	sides.:

Assuming	we	save	the	program	in	a	file	called	check_triangle.py,	we	can	run	it	like	so:

Let	us	break	this	down	a	bit.

1.	 We	are	 importing	 the	print_function	 and	division	modules	 from	python	3
like	we	did	earlier	in	this	section.	It’s	a	good	idea	to	always	include	these	in
your	programs.

2.	 We’ve	defined	a	boolean	expression	that	tells	us	if	the	sides	that	were	input
define	 a	 valid	 triangle.	 The	 result	 of	 the	 expression	 is	 stored	 in	 the

$	python	hello.py

Hello	world!

"""Usage:	check_triangle.py	[-h]	LENGTH	WIDTH	HEIGHT

Check	if	a	triangle	is	valid.

Arguments:

		LENGTH					The	length	of	the	triangle.

		WIDTH						The	width	of	the	traingle.

		HEIGHT					The	height	of	the	triangle.

Options:

-h	--help

"""

from	docopt	import	docopt

if	__name__	==	'__main__':

		arguments	=	docopt(__doc__)

		a,	b,	c	=	int(arguments['LENGTH']),

												int(arguments['WIDTH']),

												int(arguments['HEIGHT'])

		valid_triangle	=	\

						a	<	b	+	c	and	a	>	abs(b	-	c)	and	\

						b	<	a	+	c	and	b	>	abs(a	-	c)	and	\

						c	<	a	+	b	and	c	>	abs(a	-	b)

		print('Triangle	with	sides	%d,	%d	and	%d	is	valid:	%r'	%	(

						a,	b,	c,	valid_triangle

))

$	python	check_triangle.py	4	5	6

Triangle	with	sides	4,	5	and	6	is	valid:	True

valid_triangle	variable.	inside	are	true,	and	False	otherwise.
3.	 We’ve	 used	 the	 backslash	 symbol	 \	 to	 format	 are	 code	 nicely.	 The

backslash	 simply	 indicates	 that	 the	 current	 line	 is	 being	 continued	 on	 the
next	line.

4.	 When	we	run	the	program,	we	do	the	check	if	__name__	==	'__main__'.	 __name__	 is	 an
internal	 Python	 variable	 that	 allows	 us	 to	 tell	 whether	 the	 current	 file	 is
being	run	from	the	command	line	(value	__name__),	or	is	being	imported	by	a
module	 (the	 value	 will	 be	 the	 name	 of	 the	 module).	 Thus,	 with	 this
statement	we’re	just	making	sure	the	program	is	being	run	by	the	command
line.

5.	 We	are	using	 the	docopt	module	 to	handle	command	 line	arguments.	The
advantage	of	using	 this	module	 is	 that	 it	generates	a	usage	help	statement
for	 the	program	and	enforces	 command	 line	 arguments	 automatically.	All
of	this	is	done	by	parsing	the	docstring	at	the	top	of	the	file.

6.	 In	the	print	function,	we	are	using	Python’s	string	formatting	capabilities	to
insert	values	into	the	string	we	are	displaying.

5.1.12	Lambda	Expressions

As	 oppose	 to	 normal	 functions	 in	 Python	 which	 are	 defined	 using	 the	 def

keyword,	 lambda	 functions	 in	 Python	 are	 anonymous	 functions	 which	 do	 not
have	a	name	and	are	defined	using	 the	 lambda	 keyword.	The	generic	 syntax	of	 a
lambda	 function	 is	 in	 form	 oflambda	arguments:	expression,	 as	 shown	 in	 the	 following
example:

As	you	could	probably	guess,	the	result	is:

Now	consider	the	following	examples:

The	 power2	 function	 defined	 in	 the	 expression,	 is	 equivalent	 to	 the	 following
definition:

greeter	=	lambda	x:	print('Hello	%s!'%x)

print(greeter('Albert'))

Hello	Albert!

power2	=	lambda	x:	x	**	2

def	power2(x):

				return	x	**	2

https://docs.python.org/2/library/string.html#format-string-syntax

Lambda	functions	are	useful	for	when	you	need	a	function	for	a	short	period	of
time.	Note	 that	 they	can	also	be	very	useful	when	passed	as	an	argument	with
other	built-in	functions	that	take	a	function	as	an	argument,	e.g.	filter()	and	map().	In
the	next	example	we	show	how	a	lambda	function	can	be	combined	with	the	filer
function.	 Consider	 the	 array	 all_names	 which	 contains	 five	 words	 that	 rhyme
together.	We	want	to	filter	the	words	that	contain	the	word	name.	To	achieve	this,
we	pass	the	function	lambda	x:	'name'	in	x	as	 the	first	argument.	This	 lambda	function
returns	 True	 if	 the	 word	 name	 exists	 as	 a	 sub-string	 in	 the	 string	 x.	 The	 second
argument	of	filter	function	is	the	array	of	names,	i.e.	all_names.

As	you	can	see,	the	names	are	successfully	filtered	as	we	expected.

In	Python3,	filter	function	returns	a	filter	object	or	the	iterator	which	gets	lazily
evaluated	which	means	 neither	we	 can	 access	 the	 elements	 of	 the	 filter	 object
with	index	nor	we	can	use	len()	to	find	the	length	of	the	filter	object.

In	Python,	we	can	have	a	small	usually	a	single	liner	anonymous	function	called
Lambda	 function	which	 can	have	 any	number	of	 arguments	 just	 like	 a	normal
function	but	with	only	one	expression	with	no	return	statement.	The	result	of	this
expression	can	be	applied	to	a	value.

Basic	Syntax:

For	an	example:	a	function	in	python

Same	function	can	written	as	Lambda	function.	This	function	named	as	multiply
is	having	2	arguments	and	returns	their	multiplication.

all_names	=	['surname',	'rename',	'nickname',	'acclaims',	'defame']

filtered_names	=	list(filter(lambda	x:	'name'	in	x,	all_names))

print(filtered_names)

#	['surname',	'rename',	'nickname']

list_a	=	[1,	2,	3,	4,	5]

filter_obj	=	filter(lambda	x:	x	%	2	==	0,	list_a)

#	Convert	the	filer	obj	to	a	list

even_num	=	list(filter_obj)

print(even_num)

#	Output:	[2,	4]

lambda	arguments	:	expression

def	multiply(a,	b):

				return	a*b

#call	the	function

multiply(3*5)	#outputs:	15

Lambda	equivalent	for	this	function	would	be:

Here	 a	 and	 b	 are	 the	 2	 arguments	 and	 a*b	 is	 the	 expression	 whose	 value	 is
returned	as	an	output.

Also	we	don’t	need	to	assign	Lambda	function	to	a	variable.

Lambda	functions	are	mostly	passed	as	parameter	to	a	function	which	expects	a
function	objects	like	in	map	or	filter.

5.1.12.1	map

The	basic	syntax	of	the	map	function	is

map	functions	expects	a	function	object	and	any	number	of	iterables	like	list	or
dictionary.	It	executes	the	function_object	for	each	element	in	the	sequence	and
returns	a	list	of	the	elements	modified	by	the	function	object.

Example:

If	we	want	to	write	same	function	using	Lambda

5.1.12.2	dictionary

Now,	lets	see	how	we	can	interate	over	a	dictionary	using	map	and	lambda	Lets
say	we	have	a	dictionary	object

multiply	=	Lambda	a,	b	:	a*b

print(multiply(3,	5))

#	outputs:	15

(lambda	a,	b	:	a*b)(3*5)

map(function_object,	iterable1,	iterable2,...)

def	multiply(x):

				return	x	*	2

map(multiply2,	[2,	4,	6,	8])

#	Output	[4,	8,	12,	16]

map(lambda	x:	x*2,	[2,	4,	6,	8])

#	Output	[4,	8,	12,	16]

dict_movies	=	[

We	can	 iterate	 over	 this	 dictionary	 and	 read	 the	 elements	 of	 it	 using	map	 and
lambda	functions	in	following	way:

In	 Python3,	 map	 function	 returns	 an	 iterator	 or	 map	 object	 which	 gets	 lazily
evaluated	which	means	 neither	we	 can	 access	 the	 elements	 of	 the	map	 object
with	 index	nor	we	 can	use	 len()	 to	 find	 the	 length	of	 the	map	object.	We	 can
force	convert	the	map	output	i.e.	the	map	object	to	list	as	shown	next:

5.1.13	Iterators

In	Python,	 an	 iterator	protocol	 is	defined	using	 two	methods:	 __iter()__	 and	 next().
The	 former	 returns	 the	 iterator	 object	 and	 latter	 returns	 the	 next	 element	 of	 a
sequence.	Some	advantages	of	iterators	are	as	follows:

Readability
Supports	sequences	of	infinite	length
Saving	resources

There	are	several	built-in	objects	 in	Python	which	 implement	 iterator	protocol,
e.g.	string,	list,	dictionary.	In	the	following	example,	we	create	a	new	class	that
follows	the	iterator	protocol.	We	then	use	the	class	to	generate	log2	of	numbers:

				{'movie':	'avengers',	'comic':	'marvel'},

				{'movie':	'superman',	'comic':	'dc'}]

map(lambda	x	:	x['movie'],	dict_movies)		#	Output:	['avengers',	'superman']

map(lambda	x	:	x['comic'],		dict_movies)		#	Output:	['marvel',	'dc']

map(lambda	x	:	x['movie']	==	"avengers",	dict_movies)

#	Output:	[True,	False]

map_output	=	map(lambda	x:	x*2,	[1,	2,	3,	4])

print(map_output)

#	Output:	map	object:	<map	object	at	0x04D6BAB0>

list_map_output	=	list(map_output)

print(list_map_output)	#	Output:	[2,	4,	6,	8]

from	math	import	log2

class	LogTwo:

				"Implements	an	iterator	of	log	two"

				def	__init__(self,last	=	0):

								self.last	=	last

				def	__iter__(self):

								self.current_num	=	1

								return	self

				def	__next__(self):

								if	self.current_num	<=	self.last:

												result	=	log2(self.current_num)

												self.current_num	+=	1

												return	result

As	 you	 can	 see,	we	 first	 create	 an	 instance	 of	 the	 class	 and	 assign	 its	 __iter()__
function	to	a	variable	called	i.	Then	by	calling	the	next()	function	four	times,	we
get	the	following	output:

As	you	probably	noticed,	the	lines	are	log2()	of	1,	2,	3,	4	respectively.

5.1.14	Generators

Before	 we	 go	 to	 Generators,	 please	 understand	 Iterators.	 Generators	 are	 also
Iterators	but	they	can	only	be	interated	over	once.	Thats	because	Generators	do
not	store	the	values	in	memory	instead	they	generate	the	values	on	the	go.	If	we
want	to	print	those	values	then	we	can	either	simply	iterate	over	them	or	use	the
for	loop.

5.1.14.1	Generators	with	function

For	 example:	we	 have	 a	 function	 named	 as	multiplyBy10	which	 prints	 all	 the
input	numbers	multiplied	by	10.

Now,	if	we	want	to	use	Generators	here	then	we	will	make	following	changes.

								else:

												raise	StopIteration

L	=	LogTwo(5)

i	=	iter(L)

print(next(i))

print(next(i))

print(next(i))

print(next(i))

$	python	iterator.py

0.0

1.0

1.584962500721156

2.0

def	multiplyBy10(numbers):

				result	=	[]

				for	i	in	numbers:

								result.append(i*10)

				return	result

new_numbers	=	multiplyBy10([1,2,3,4,5])

print	new_numbers		#Output:	[10,	20,	30,	40	,50]

def	multiplyBy10(numbers):

				for	i	in	numbers:

								yield(i*10)

new_numbers	=	multiplyBy10([1,2,3,4,5])

In	Generators,	we	use	yield()	 function	 in	place	of	 return().	So	when	we	 try	 to
print	new_numbers	list	now,	it	just	prints	Generators	object.	The	reason	for	this
is	because	Generators	dont	hold	any	value	 in	memory,	 it	yields	one	 result	at	a
time.	So	essentially	it	is	just	waiting	for	us	to	ask	for	the	next	result.	To	print	the
next	result	we	can	just	say	print	next(new_numbers)	,	so	how	it	is	working	is	its
reading	the	first	value	and	squaring	it	and	yielding	out	value	1.	Also	in	this	case
we	can	just	print	next(new_numbers)	5	times	to	print	all	numbers	and	if	we	do	it
for	6th	time	then	we	will	get	an	error	StopIteration	which	meanns	Generators	has
exausted	its	limit	and	it	has	no	6th	element	to	print.

5.1.14.2	Generators	using	for	loop

If	we	now	want	to	print	the	complete	list	of	squared	values	then	we	can	just	do:

The	output	will	be:

5.1.14.3	Generators	with	List	Comprehension

Python	 has	 something	 called	 List	 Comprehension,	 if	we	 use	 this	 then	we	 can
replace	the	complete	function	def	with	just:

Here	 the	 point	 to	 note	 is	 square	 brackets	 []	 in	 line	 1	 is	 very	 important.	 If	we
change	it	to	()	then	again	we	will	start	getting	Generators	object.

print	new_numbers		#Output:	Generators	object

print	next(new_numbers)		#Output:	1

def	multiplyBy10(numbers):

				for	i	in	numbers:

								yield(i*10)

new_numbers	=	multiplyBy10([1,2,3,4,5])

for	num	in	new_numbers:

				print	num

10

20

30

40

50

new_numbers	=	[x*10	for	x	in	[1,2,3,4,5]]

print	new_numbers		#Output:	[10,	20,	30,	40	,50]

new_numbers	=	(x*10	for	x	in	[1,2,3,4,5])

print	new_numbers		#Output:	Generators	object

We	can	get	 the	 individual	elements	again	 from	Generators	 if	we	do	a	 for	 loop
over	new_numbers	like	we	did	previously.	Alternatively,	we	can	convert	it	into	a
list	and	then	print	it.

But	here	if	we	convert	this	into	a	list	then	we	loose	on	performance,	which	we
will	just	see	next.

5.1.14.4	Why	to	use	Generators?

Generators	 are	 better	with	Performance	 because	 it	 does	 not	 hold	 the	 values	 in
memory	and	here	with	the	small	examples	we	provide	its	not	a	big	deal	since	we
are	 dealing	 with	 small	 amount	 of	 data	 but	 just	 consider	 a	 scenario	 where	 the
records	 are	 in	 millions	 of	 data	 set.	 And	 if	 we	 try	 to	 convert	 millions	 of	 data
elements	 into	 a	 list	 then	 that	 will	 definitely	 make	 an	 impact	 on	 memory	 and
performance	because	everything	will	in	memory.

Lets	 see	 an	 example	 on	 how	 Generators	 help	 in	 Performance.	 First,	 without
Generators,	 normal	 function	 taking	 1	 million	 record	 and	 returns	 the
result[people]	for	1	million.

new_numbers	=	(x*10	for	x	in	[1,2,3,4,5])

print	list(new_numbers)		#Output:	[10,	20,	30,	40	,50]

names	=	['John',	'Jack',	'Adam',	'Steve',	'Rick']

majors	=	['Math',

										'CompScience',

										'Arts',

										'Business',

										'Economics']

#	prints	the	memory	before	we	run	the	function

memory	=	mem_profile.memory_usage_resource()

print	(f'Memory	(Before):	{memory}Mb')

def	people_list(people):

				result	=	[]

				for	i	in	range(people):

								person	=	{

																'id'	:	i,

																'name'	:	random.choice(names),

																'major'	:	randon.choice(majors)

																}

								result.append(person)

				return	result

t1	=	time.clock()

people	=	people_list(10000000)

t2	=	time.clock()

#	prints	the	memory	after	we	run	the	function

memory	=	mem_profile.memory_usage_resource()

print	(f'Memory	(After):	{memory}Mb')

print	('Took	{time}	seconds'.format(time=t2-t1))

#Output

Memory	(Before):	15Mb

I	 am	 just	giving	approximate	values	 to	compare	 it	with	next	 execution	but	we
just	try	to	run	it	we	will	see	a	serious	consumption	of	memory	with	good	amount
of	time	taken.

Now	 after	 running	 the	 same	 code	 using	 Generators,	 we	will	 see	 a	 significant
amount	 of	 performance	boost	with	 alomost	 0	Seconds.	And	 the	 reason	behind
this	is	that	in	case	of	Generators,	we	do	not	keep	anything	in	memory	so	system
just	reads	1	at	a	time	and	yields	that.

Memory	(After):	318Mb

Took	1.2	seconds

names	=	['John',	'Jack',	'Adam',	'Steve',	'Rick']

majors	=	['Math',

										'CompScience',

										'Arts',

										'Business',

										'Economics']

#	prints	the	memory	before	we	run	the	function

memory	=	mem_profile.memory_usage_resource()

print	(f'Memory	(Before):	{memory}Mb')

def	people_generator(people):

				for	i	in	xrange(people):

								person	=	{

												'id'	:	i,

												'name'	:	random.choice(names),

												'major'	:	randon.choice(majors)

								}

								yield	person

t1	=	time.clock()

people	=	people_list(10000000)

t2	=	time.clock()

#	prints	the	memory	after	we	run	the	function

memory	=	mem_profile.memory_usage_resource()

print	(f'Memory	(After):	{memory}Mb')

print	('Took	{time}	seconds'.format(time=t2-t1))

#Output

Memory	(Before):	15Mb

Memory	(After):	15Mb

Took	0.01	seconds

6	REFERENCES

☁�

https://github.com/cloudmesh-community/book/blob/master/chapters/empty.md

	1 PREFACE
	1.1 Disclaimer ☁️
	1.1.1 Acknowledgment
	1.1.2 Extensions

	2 INTRODUCTION
	2.1 Introduction to Python ☁️
	2.1.1 References

	3 INSTALATION
	3.1 Python 3.7.4 Installation ☁️
	3.1.1 Hardware
	3.1.2 Prerequisits Ubuntu 19.04
	3.1.3 Prerequisits macOS
	3.1.3.1 Installation from Apple App Store
	3.1.3.2 Installation from python.org
	3.1.3.3 Installation from Hoembrew

	3.1.4 Prerequisits Ubuntu 18.04
	3.1.5 Prerequisite Windows 10
	3.1.5.1 Linux Subsystem Install

	3.1.6 Prerequisit venv
	3.1.7 Install Python 3.7 via Anaconda
	3.1.7.1 Download conda installer
	3.1.7.2 Install conda
	3.1.7.3 Install Python 3.7.4 via conda

	3.2 Multi-Version Python Installation ☁️
	3.2.1 Disabling wrong python installs
	3.2.2 Managing 2.7 and 3.7 Python Versions without Pyenv
	3.2.3 Managing Multiple Python Versions with Pyenv
	3.2.3.1 Installation pyenv via Homebrew
	3.2.3.2 Install pyenv on Ubuntu 18.04
	3.2.3.3 Using pyenv
	3.2.3.3.1 Using pyenv to Install Different Python Versions
	3.2.3.3.2 Switching Environments

	3.2.3.4 Updating Python Version List
	3.2.3.4.1 Updating to a new version of Python with pyenv

	3.2.4 Anaconda and Miniconda and Conda
	3.2.4.1 Miniconda
	3.2.4.2 Anaconda

	3.2.5 Exercises

	4 FIRST STEPS
	4.1 Interactive Python ☁️
	4.1.1 REPL (Read Eval Print Loop)
	4.1.2 Interpreter
	4.1.3 Python 3 Features in Python 2

	4.2 Editors ☁️
	4.2.1 Pycharm
	4.2.2 Python in 45 minutes

	4.3 Google Colab ☁️
	4.3.1 Introduction to Google Colab
	4.3.2 Programming in Google Colab
	4.3.3 Benchamrking in Google Colab with Cloudmesh

	5 LANGUAGE
	5.1 Language ☁️
	5.1.1 Statements and Strings
	5.1.2 Comments
	5.1.3 Variables
	5.1.4 Data Types
	5.1.4.1 Booleans
	5.1.4.2 Numbers

	5.1.5 Module Management
	5.1.5.1 Import Statement
	5.1.5.2 The from … import Statement

	5.1.6 Date Time in Python
	5.1.7 Control Statements
	5.1.7.1 Comparison
	5.1.7.2 Iteration

	5.1.8 Datatypes
	5.1.8.1 Lists
	5.1.8.2 Sets
	5.1.8.3 Removal and Testing for Membership in Sets
	5.1.8.4 Dictionaries
	5.1.8.5 Dictionary Keys and Values
	5.1.8.6 Counting with Dictionaries

	5.1.9 Functions
	5.1.10 Classes
	5.1.11 Modules
	5.1.12 Lambda Expressions
	5.1.12.1 map
	5.1.12.2 dictionary

	5.1.13 Iterators
	5.1.14 Generators
	5.1.14.1 Generators with function
	5.1.14.2 Generators using for loop
	5.1.14.3 Generators with List Comprehension
	5.1.14.4 Why to use Generators?

	6 REFERENCES

