

OPENSTACK

The	Chameleon	Cloud	Team	and	Gregor	von	Laszewski

(c)	Gregor	von	Laszewski,	2018,	2019

OPENSTACK

1	PREFACE
1.1	Disclaimer	☁�
1.1.1	Acknowledgment
1.1.2	Extensions

2	CHAMELEON	CLOUD
2.1	Chameleon	Cloud	Security	Warning	☁�
2.2	Resources	☁�
2.2.1	Outages
2.2.2	Account	Creation
2.2.3	Join	a	Project
2.2.4	Usage	Restriction

2.3	Chameleon	Cloud	Hardware	☁�
2.3.1	Standard	Cloud	Units
2.3.2	Network
2.3.3	Shared	Storage
2.3.4	Heterogeneous	Compute	Hardware

2.4	Chameleon	Cloud	Charge	Rates	☁�
2.4.1	Service	Units
2.4.2	Project	Allocation	Size

2.5	Getting	Started	on	Chameleon	Cloud	☁�
2.5.1	Step	1:	Create	a	Chameleon	account
2.5.2	Step	2:	Create	or	join	a	project
2.5.3	Step	3:	Start	using	Chameleon

2.6	OpenStack	Virtual	Machines	☁�
2.6.1	Web	Interface
2.6.1.1	Managing	Virtual	Machine	Instances
2.6.1.2	Snapshots
2.6.1.3	Firewall	(Access	Security)

2.6.2	OpenStack	REST	Interfaces
2.6.3	Downloading	and	uploading	data

2.7	Cloudmesh	OpenStack	Command	Line	Interface	☁�
2.7.1	Instalation	of	Cloudmesh	Client
2.7.2	Floating	IP	Address

2.8	OpenStack	Command	Line	Interface	☁�

2.8.0.1	Creating	OpenStack	RC	via	the	editor
2.8.0.2	Creating	OpenStack	RC	via	the	GUI
2.8.1	CLI	to	Manage	Virtual	Machines
2.8.2	KeyPair	Registration
2.8.3	Start	a	new	VM	instance
2.8.4	Floating	IP	Address
2.8.5	Termination	of	VM	Instance

2.9	OpenStack	Horizon	Graphical	User	Interface	☁�
2.9.1	Configure	resources
2.9.2	Interact	with	resources
2.9.2.1	Snapshot	an	instance

2.9.3	Use	FPGAs
2.9.4	Next	Step

2.10	OpenStack	HEAT	☁�
2.10.1	Supporting	Complex	Appliances
2.10.2	Chameleon	Appliance	Catalog
2.10.3	Deployment
2.10.4	Heat	Template
2.10.5	Customizing	an	existing	template
2.10.6	Writing	a	new	template
2.10.6.1	Heat	template	version
2.10.6.2	Description
2.10.6.3	Resources
2.10.6.4	Parameters
2.10.6.5	Outputs

2.10.7	Sharing	new	complex	appliances
2.10.8	Advanced	topics
2.10.8.1	All-to-all	information	exchange

2.11	Openstack	Bare	Metal	☁�
2.12	Chameleon	Cloud	Frequently	Asked	Questions	☁�
2.12.1	Appliances
2.12.1.1	What	is	an	appliance?
2.12.1.2	What	is	the	Appliance	Catalog?
2.12.1.3	How	do	I	publish	an	appliance	in	the	Appliance	Catalog?
2.12.1.4	How	can	I	manage	an	appliance	on	Appliance	Catalog?
2.12.1.5	Why	are	there	different	image	IDs	for	the	same	appliance?
2.12.1.6	Can	I	use	another	operating	system	on	bare-metal?

2.12.2	Bare	Metal	Troubleshooting
2.12.2.1	Why	are	my	Bare	Metal	instances	failing	to	launch?

2.12.3	OpenStack	KVM	Troubleshooting
2.12.3.1	Why	are	my	OpenStack	KVM	instances	failing	to	launch?
2.12.3.2	Why	can	I	not	ping	or	SSH	to	my	instance?

3	REFERENCES

1	PREFACE

Sun	Nov	24	15:30:41	EST	2019	☁�

1.1	DISCLAIMER	☁�
This	book	has	been	generated	with	Cyberaide	Bookmanager.

Bookmanager	is	a	tool	to	create	a	publication	from	a	number	of	sources	on	the
internet.	 It	 is	 especially	 useful	 to	 create	 customized	 books,	 lecture	 notes,	 or
handouts.	 Content	 is	 best	 integrated	 in	markdown	 format	 as	 it	 is	 very	 fast	 to
produce	the	output.

Bookmanager	has	been	developed	based	on	our	experience	over	the	last	3	years
with	 a	more	 sophisticated	 approach.	Bookmanager	 takes	 the	 lessons	 from	 this
approach	and	distributes	a	tool	that	can	easily	be	used	by	others.

The	 following	shields	provide	 some	 information	about	 it.	Feel	 free	 to	click	on
them.

pypipypi v0.2.28v0.2.28 	 LicenseLicense Apache	2.0Apache	2.0 	 pythonpython 3.73.7 	 formatformat wheelwheel 	 statusstatus stablestable 	 buildbuild unknownunknown

1.1.1	Acknowledgment

If	you	use	bookmanager	to	produce	a	document	you	must	include	the	following
acknowledgement.

“This	 document	 was	 produced	 with	 Cyberaide	 Bookmanager
developed	 by	 Gregor	 von	 Laszewski	 available	 at
https://pypi.python.org/pypi/cyberaide-bookmanager.	 It	 is	 in	 the
responsibility	 of	 the	 user	 to	make	 sure	 an	 author	 acknowledgement
section	 is	 included	 in	 your	 document.	 Copyright	 verification	 of
content	included	in	a	book	is	responsibility	of	the	book	editor.”

The	bibtex	entry	is
@Misc{www-cyberaide-bookmanager,

		author	=			{Gregor	von	Laszewski},

https://github.com/cloudmesh-community/book/blob/master/chapters/version.md
https://github.com/cyberaide/bookmanager/blob/master/bookmanager/template/disclaimer.md
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://github.com/cloudmesh/cyberaide-bookmanager/blob/master/LICENSE
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://pypi.python.org/pypi/cyberaide-bookmanager
https://travis-ci.com/cloudmesh/cyberaide-bookmanager

1.1.2	Extensions

We	 are	 happy	 to	 discuss	 with	 you	 bugs,	 issues	 and	 ideas	 for	 enhancements.
Please	use	the	convenient	github	issues	at

https://github.com/cyberaide/bookmanager/issues

Please	do	not	file	with	us	issues	that	relate	to	an	editors	book.	They	will	provide
you	with	their	own	mechanism	on	how	to	correct	their	content.

		title	=				{{Cyberaide	Book	Manager}},

		howpublished	=	{pypi},

		month	=				apr,

		year	=					2019,

		url={https://pypi.org/project/cyberaide-bookmanager/}

}

https://github.com/cyberaide/bookmanager/issues

2	CHAMELEON	CLOUD

2.1	CHAMELEON	CLOUD	SECURITY	WARNING	☁�

	 Chameleon	 cloud	 promotes	 insecure	 use	 of	 ssh	 while
suggesting	passphrase	less	keys.	This	is	very	dangerous	and	wrong
due	to	the	fact	that	someone	could	gain	access	to	your	computer	and
if	a	password	 less	key	 is	stolen	easy	access	 to	other	systems	can	be
achieved.	 Instead	 you	must	 use	whenever	 possible	 passphrases	 and
use	ssh	agent	and	ssh	add!	The	same	best-practice	security	rules	that
you	use	on	your	laptop	must	apply	on	resources	that	you	place	in	a
cloud!

To	show	you	this	insecue	practice,	we	quote	from	their	Web	page:

You	will	receive	a	message	“Enter	same	passphrase	again:”	so	just
leave	it	blank	and	press	enter.

This	is	clearly	WRONG	⚠�

Hence	do	not	use	their	advise	that	is	mentioned	in	their	documentation.	Follow
ours,	and	use	a	passphrase!	If	uncertain,	discuss	with	us.

Chameleon	 cloud	 also	 promotes	 the	 use	 of	 putty	 on	 the	 clients	 connecting	 to
windows	which	was	for	many	years	standard	on	Windows	machines.	However,
there	 are	 now	 much	 better	 ways	 of	 using	 keys	 from	 the	Windows	 command
prompt	as	ssh,	ssh-keygen	and	ssh-add	are	distributed	with	Windows	10	and	can	now	be
activited.	 Please	 use	 them	 instead	 of	 putty	 as	 they	 conform	 to	 best	 practices
across	all	platforms	and	not	just	Windows	as	putty	does.	However,	you	still	can
use	putty	on	Windows	if	you	like,	there	is	no	security	issue	with	putty	as	far	as
we	know.	Make	sure	you	use	it	properly.

2.2	RESOURCES	☁�
You	can	also	visit	the	Chameleon	Web	page	as	there	is	more	information	about

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/chameleon/warning.md
https://www.chameleoncloud.org/about/frequently-asked-questions/#toc-ssh-issues
https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/chameleon/resources.md

other	 topics	 that	we	may	not	 need	 to	worry	 about.	This	mostly	 includes	using
chameleon	 cloud	 as	 a	 bare	metal	 resource	 and	 appliances,	which	we	 typically
will	not	use.

If	 you	 prefer	 you	 can	 also	 go	 to	 the	Chameleon	Web	 site	 using	 the	 following
links.	 However	 we	 have	 improved	 some	 of	 the	 documentation	 found	 in	 this
document.	The	links	to	Chameleons	online	resources	are:

Web	page
Documentation
News
About
Log	in
Dashborad

Howevever,	 we	 have	 augmented	 some	 information	 and	 even	 provided
corrections	 that	 are	 not	 covered	 on	 the	 Chameleon	 cloud	 Web	 Page.	 The
information	 that	overlap	between	 the	Web	page	and	 this	material	have	bebeen
copied	and	modified	with	permission	from	the	Chameleoncloud	team.

2.2.1	Outages

Any	 computer	 system	 may	 undergo	 maintenance.	 Before	 filing	 tickets	 with
Chameleon	cloud,	make	sure	that	the	cloud	is	operational.	Outages	are	posted	at

https://www.chameleoncloud.org/user/outages/

2.2.2	Account	Creation

The	fist	step	to	get	access	Chameleon	cloud	is	to	create	a	user	account	if	you	do
not	already	have	one.	You	can	skip	to	the	next	section	if	you	have	a	chameleon
cloud	account.

The	register	web	page	is	available	at:

https://www.chameleoncloud.org/user/register/

For	more	details,	please	als	consult	the	chameleon	chapter	in	the	handbook.

https://www.chameleoncloud.org/
https://chameleoncloud.readthedocs.io/en/latest/
https://www.chameleoncloud.org/news/
https://www.chameleoncloud.org/about/chameleon/
https://www.chameleoncloud.org/login/
https://www.chameleoncloud.org/user/dashboard/
https://www.chameleoncloud.org/user/outages/
https://www.chameleoncloud.org/user/register/

2.2.3	Join	a	Project

An	 active	 project	 is	 required	 to	 access	 compute	 resources.	 Each	 class	 has	 a
particular	project	number	that	you	will	need	to	write	down	as	you	will	use	it	to
interact	with	the	system.	The	information	is	given	out	by	the	instructor.

For	the	Fall	2019	516	related	classes	please	use	the	following	project	number:

CH-819337

However,	 before	 you	 can	 access	 it,	 the	 instructor	 (in	 our	 class	 Dr.	 von
Laszewski)	needs	to	authorize	you	to	use	the	project.	For	this	you	have	filled	out
an	account	survey	that	you	were	pointed	to	in	piazza.	The	most	common	errors
we	see	are	that	students	provide	us	with	the	wrong	user	name	or	have	not	applied
for	a	chameleon	account.	Once	the	instructor	has	added	you,	you	will	be	able	to
use	VM’s	on	Chameleon	cloud.

Note:	 If	 you	 use	 chameleon	 cloud	 for	 another	 class,	 please	 consult
with	your	instructor	and	obtain	a	project	number	from	them.	You	will
have	to	let	them	know	your	chameleon	user	ID,	so	they	can	activate
your	account.

2.2.4	Usage	Restriction

As	using	VM’s	in	a	shared	environment	has	ain	impact	on	resources	for	all,	you
are	REQUIRED	 to	 shut	 down	 your	 resources	 after	 you	 are	 not	 using	 them
anymore.	Furthermore,	before	 the	class	 is	over	and	we	assign	grades	you	must
terminate	your	 instances	and	 free	all	 ip	addresses.	Remember	 that	any	 running
VM	is	just	like	you	were	running	a	real	computer.	I	am	sure	you	close	the	lid	of
your	 laptop	when	not	 in	use.	Shutting	down	the	VM	is	similar	and	avoids	 that
you	unnecessarily	use	resources	 that	others	could	use	 in	a	shared	environment.
Furthermore,	if	you	keep	the	machines	running	you	will	use	energy	and	have	an
impact	on	the	environment.	Be	a	team	player	and	be	environmentally	conscious
by	shutting	down	your	non	used	instances.	The	way	we	use	chameleon	cloud	is
as	a	large	team.	As	such	please	avoid	deleting	other	peoples	VM’s.	All	vms	that
do	not	follow	a	particular	namig	scheme	ar	subject	to	deletion	at	any	time.

https://www.chameleoncloud.org/user/projects/37347/

The	pattern	of	the	vms	must	follow:

any	vm	owned	by	gregor	is	allowed:	*gregor*	if	it	is	owned	by	Gregor
any	vm	with	the	name	NNN-firstname-i,	where	NNN	is	the	last	digit	of	your	hid
from	class,	firstname	is	your	firstname	and	i	is	an	integer.

2.3	CHAMELEON	CLOUD	HARDWARE	☁�
The	Chameleon	 architecture	 consists	 of	 a	 set	 of	 standard	 cloud	 units	 (SCUs),
each	of	which	is	a	single	rack	with	42	compute	nodes,	4	storage	nodes	attached
to	128TB	of	 local	 storage	 in	 configurable	 arrays,	 and	 an	OpenFlow	compliant
network	 switch.	 In	 addition	 to	 the	 homogeneous	 SCUs,	 a	 variety	 of
heterogeneous	 hardware	 types	 is	 available	 to	 experiment	 with	 alternative
technologies.	The	testbed	also	includes	a	shared	infrastructure	with	a	persistent
storage	 system	 accessible	 across	 the	 testbed,	 a	 top-level	 network	 gateway	 to
allow	 access	 to	 public	 networks,	 and	 a	 set	 of	 management	 and	 provisioning
servers	 to	 support	 user	 access,	 control,	 monitoring	 and	 configuration	 of	 the
testbed.	 Chameleon	 is	 physically	 distributed	 between	 the	 Texas	 Advanced
Computing	 Center	 (TACC)	 and	 the	 University	 of	 Chicago	 (UC)	 through
100Gbps	 Internet2	 links,	 to	 allow	users	 to	 examine	 the	effects	of	 a	distributed
cloud.

Hardware	Summary

Standard	Cloud	Units	(SCUs) Homogeneous	Hardware	Types
Number	of	Nodes	per	Rack:
Local	Storage	per	homogeneous	SCU: 128TB	(configurable)
Network	Switch: OpenFlow	Compliant
TACC/UC	Distributed	Cloud 100Gbps	Internet2	links

As	 chameleon	 cloud	 updates	 their	 hardware	 we	 recommend	 to	 take	 a	 look	 at
their	hardware	portal	page.	This	page	provides	detailed	information	through	their
Chameleon	cloud	Resource	Discovery	Portal

Unfortunately,	Chameleon	Cloud	only	uses	42	(as	of	Sep	11	2019)	of	its	nodes
with	 Infiniband	 connections.	 Previous	 efforts	 such	 as	 FutureGrid	were	 able	 to

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/chameleon/hardware.md
https://www.chameleoncloud.org/user/discovery/

utilize	all	128	nodes	connected	via	Infiniband.	However	FutureGrid	is	no	longer
active.	If	you	need	better	network	performance	you	can	use	SDSC’s	comet	that
provides	 virtual	 clusters	 while	 the	 nodes	 are	 connected	 all	 to	 Infiniband.
However,	 comet	 does	 not	 use	 OpenStack,	 but	 provides	 a	 very	 convenient
command	ine	tool	while	leveraging	cloudmesh.

2.3.1	Standard	Cloud	Units

The	 homogeneous	 standard	 cloud	 unit	 is	 a	 self-contained	 rack	 with	 all	 the
components	necessary	to	run	a	complete	cloud	infrastructure,	and	the	capability
to	combine	with	other	units	to	form	a	larger	experiment.	The	rack	consists	of	42
Dell	R630	servers;	each	with	24	cores	delivered	 in	dual	socket	 Intel	Xeon	E5-
2670	v3	“Haswell”	processors	(each	with	12	cores	@	2.3GHz)	and	128	GiB	of
RAM.	 In	addition	 to	 the	compute	 servers,	 each	unit	 contains	 storage	hosted	 in
two	FX2	chassis,	each	containing	two	Dell	FC430	servers	attached	to	two	Dell
PowerEdge	FD332	storage	blocks	containing	16	2TB	hard	drives,	for	a	total	of
128TB	 of	 raw	 disk	 storage	 per	 unit.	 These	 FC430	 storage	 nodes	 contain	 dual
socket	Intel	Xeon	E5-2650	v3	“Haswell”	processors	(each	with	10	cores	@	2.3
GHz),	64	GiB	of	RAM,	and	can	be	combined	across	SCUs	to	create	a	Big	Data
infrastructure	with	more	than	a	PB	of	storage.	Each	node	in	the	SCU	connects	to
a	Dell	 switch	at	10Gbps,	with	40Gbps	of	bandwidth	 to	 the	core	network	 from
each	SCU.	The	total	system	contains	12	SCUs	(10	at	TACC	and	2	at	UC)	for	a
total	of	13,056	cores,	66	TiB	of	RAM,	and	1.5PB	of	configurable	storage	in	the
SCU	subsystem.	(See	Figure	1)

Figure	1:	Chameleon	Cloud	Racks

2.3.2	Network

Networking	is	changing	rapidly,	and	the	network	fabric	is	as	much	a	part	of	the
research	 focus	 of	 Chameleon	 as	 the	 compute	 or	 storage.	 For	 the	 Chameleon
network,	 every	 switch	 in	 the	 research	 network	 is	 a	 fully	OpenFlow	 compliant
programmable	Dell	S6000-ON	switch.	Each	node	connects	to	this	network	at	10
Gbps,	 and	 each	 unit	 uplinks	 with	 40Gbps	 per	 rack	 to	 the	 Chameleon	 core
network.	The	core	switches	(Dell	S6000-ON)	are	connected	by	40	Gbps	Ethernet
links,	which	connect	to	the	backbone	100Gbps	services	at	both	UC	and	TACC.
A	Fourteen	Data	Rate	(FDR)	Infiniband	network	(56Gbps)	is	also	deployed	on
one	SCU	to	allow	exploration	of	alternate	networks.

2.3.3	Shared	Storage

While	 storage	 is	 dynamically	 provisioned	 to	 researchers	 to	 be	 used	 as	 an
experiment	 needs	within	 the	SCUs,	Chameleon	 also	 provides	 a	 shared	 storage
system.	The	shared	storage	provides	more	than	3.6PB	of	raw	disk	in	the	initial
configuration,	which	is	partitioned	between	a	file	system	and	an	object	store	that

is	persistent	between	experiments.	The	shared	storage	is	comprised	of	four	Dell
R630	servers	with	128	GiB	of	RAM,	four	MD3260	external	drive	arrays,	and	six
MD3060e	drive	expansion	chassis,	populated	by	600	6TB	near	line	SAS	drives.
The	 system	 also	 includes	 a	 dozen	 PowerEdge	 R630	 servers	 as	 management
nodes	 to	 provide	 for	 login	 access	 to	 the	 resource,	 data	 staging,	 system
monitoring,	and	hosting	various	OpenStack	services.

2.3.4	Heterogeneous	Compute	Hardware

The	 heterogeneous	 hardware	 includes	 various	 technologies:	 GPU	 and	 FPGA
accelerators,	 SSD	 and	 NVMe	 storage,	 low-power	 ARM,	 Atom,	 and	 Xeon
systems-on-a-chip.	With	the	exception	of	the	low-power	systems-on-a-chip,	each
of	the	additional	nodes	is	a	Dell	PowerEdge	R730	server	with	the	same	CPUs	as
the	R630	servers	in	the	SCUs.

The	 two	 storage	 hierarchy	 nodes	 have	 been	 designed	 to	 enable	 experiments
using	multiple	layers	of	caching:	they	are	configured	with	512	GiB	of	memory,
two	 Intel	P3700	NVMe	of	2	TB	each,	 four	 Intel	S3610	SSDs	of	1.6	TB	each,
and	four	15K	SAS	HDDs	of	600	GB	each.

The	 GPU	 offering	 consists	 of	 two	 K80	 GPU	 nodes,	 two	 M40	 GPU	 nodes,
sixteen	P100	GPU	nodes.	These	nodes	target	experiments	using	accelerators	 to
improve	 the	 performance	 of	 some	 algorithms,	 experiments	 with	 new
visualization	 systems,	 and	 deep	 machine	 learning.	 Each	 K80	 GPU	 node	 is
upgraded	 with	 an	 NVIDIA	 Tesla	 K80	 accelerator,	 consisting	 of	 two	 GK210
chips	 with	 2496	 cores	 each	 (4992	 cores	 in	 total)	 and	 24	 GiB	 of	 GDDR5
memory.	Each	M40	node	is	upgraded	with	an	NVIDIA	Tesla	M40	accelerator,
consisting	of	a	GM200	chip	with	3072	cores	and	12	GiB	of	GDDR5	memory.
The	P100	nodes	have	two	GPU	cards	installed	each,	providing	32	P100	GPUs	in
total.	The	P100	GPUs	utilize	GP100	chips	providing	3584	cores,	with	16	GiB
GDDR5	RAM	in	each	card.	In	order	to	make	it	easy	for	users	to	get	started	with
the	GPU	nodes,	we	have	developed	a	CUDA	appliance	 that	 includes	NVIDIA
drivers	as	well	as	the	CUDA	framework.

GPU Chip Cores	per
GPU

RAM	per
GPU

GPU	per
node

#	of
nodes

Tesla GK 24	GiB

https://www.chameleoncloud.org/appliances/21/

K80 210 2496	×	2 GDDR5 1 2

Tesla
M40

GM
200 3072 12	GiB

GDDR5 1 2

Tesla
P100 GP100 3584 16	GiB

GDDR5 2 16

The	 four	 FPGA	 nodes	 have	 a	 Nallatech	 385A	 board	 with	 an	 Altera	 Arria	 10
1150	GX	FPGA	 (up	 to	 1.5	 TFlops),	 8	GiB	DDR3	 on-card	memory,	 and	 dual
QSFP	10/40	GbE	support.	The	Chameleon	FPGA	User	Guide	provides	 details
for	conducting	experiments	on	this	hardware.

The	 low-power	 systems	 are	 comprised	 of	 8	 low	 power	 Xeon	 servers	 (HP
ProLiant	m710p	with	 one	 4-core	 Intel	Xeon	E3-1284L	v4	 processor),	 8	Atom
servers	 (HP	 ProLiant	 m300	 with	 one	 8-core	 Intel	 Avoton-based	 System	 on	 a
Chip),	and	24	ARM	servers	(HP	ProLiant	m400	with	one	8-core	AppliedMicro
X-gene	 System	 on	 a	 Chip).	 These	 are	 all	 delivered	 in	 a	 single	 HP	Moonshot
1500	chassis.

For	 more	 information	 on	 how	 you	 can	 reserve	 these	 nodes,	 see	 the
heterogeneous	hardware	section	of	the	bare	metal	user’s	guide.

2.4	CHAMELEON	CLOUD	CHARGE	RATES	☁�
It	is	important	to	fully	understand	the	charge	rates	of	your	VM	and	storage	use.

Chameleon	 has	 two	 types	 of	 limitations,	 introduced	 to	 promote	 fair	 resource
usage	to	all:

Allocation:

Chameleon	projects	 are	 limited	 to	a	per-project	 allocation	currently	 set	 to
20,000	service	units	for	6	months.	Allocations	can	be	renewed	or	extended

Lease:

To	ensure	fairness	to	all	users,	resource	reservations	(leases)	are	limited	to	a

https://www.chameleoncloud.org/docs/bare-metal-user-guide/fpga/
https://www.chameleoncloud.org/docs/bare-metal-user-guide/#heterogeneous_hardware
https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/chameleon/charge.md

duration	of	7	days.	However,	an	active	lease	within	48	hours	of	its	end	time
can	be	prolonged	by	up	to	7	days	from	the	moment	of	request	if	resources
are	available.	To	prolong	a	lease,	click	on	the	“Update	Lease”	button	in	the
Reservations	 panel	 of	 the	 CHI	 OpenStack	 dashboard,	 and	 enter	 the
additional	 duration	 requested	 in	 the	 “Prolong	 for”	 box	 including	 the	 unit
suffix,	e.g.	“5d”	for	5	days	or	“30m”	for	30	minutes.	If	there	is	an	advance
reservation	 blocking	 your	 lease	 prolongation	 that	 could	 potentially	 be
moved,	 you	 can	 interact	 through	 the	 users	mailing	 list	 to	 coordinate	with
others	users.	Additionally,	 if	you	know	from	 the	 start	 that	your	 lease	will
require	 longer	 than	a	week	and	can	 justify	 it,	you	can	contact	Chameleon
staff	 via	 the	 ticketing	 system	 to	 request	 a	 one-time	 exception	 to	 create	 a
longer	lease.	The	lease	must	be	requested	by	the	PI.

2.4.1	Service	Units

Chameleon	allocations	can	consist	of	 several	components	of	 the	 system.	Users
can	request	allocation	of	individual	compute	nodes,	storage	servers,	or	complete
Scalable	Compute	Units	(SCUs)	which	contain	compute	servers,	storage	nodes,
and	an	open	flow	switch.

Compute	servers	are	allocated	in	Service	Units	(SUs),	which	equates	to	one	hour
of	wall	 clock	 time	on	 a	 single	 server	 (for	 virtual	machines,	 an	SU	 is	 24	 cores
with	up	to	128GB	of	RAM).	Note	this	unit	differs	from	traditional	HPC	or	cloud
service	units	that	are	charged	in	core-hours;	a	Chameleon	SU	is	a	full	server,	as
the	 type	of	 experiments	 and	performance	measurements	 users	may	wish	 to	 do
may	be	contaminated	by	sharing	nodes.

Storage	servers	are	also	charged	in	SUs,	at	2x	the	rate	of	compute	servers	(i.e.,	1
hour	allocation	of	1	storage	server	==	2	SUs).	SCUs	are	charged	at	the	rate	of	50
SUs	 per	 wall	 clock	 hour	 (42	 compute	 servers,	 4	 storage	 nodes,	 plus	 one
OpenFlow	switch).

An	allocation	may	make	use	of	multiple	SCUs,	up	to	the	size	of	the	full	testbed.

For	example,	a	user	wishing	to	provision	a	10	node	cluster	+1	storage	server	for
a	1	week	experiment	should	budget	[(10	+	2)	SUs	per	hour]		[7	days		24	hours/day]	=	2,016	SUs	 for
that	experiment.

https://www.chameleoncloud.org/user/help/ticket/new/

SUs	are	charged	the	same	regardless	of	use	case.	Hence,	whether	asking	for	bare
metal	access,	virtual	machine	access,	or	use	of	default	images,	the	charge	is	the
same	 —	 you	 are	 charged	 for	 the	 fraction	 of	 the	 resource	 your	 experiment
occupies,	regardless	of	the	type	of	the	experiment.

The	 basic	 principle	 for	 charging	 service	 units	 for	 Chameleon	 resources	 is	 to
evaluate	 the	 amount	 of	 time	 a	 fraction	 of	 the	 resource	 is	 unavailable	 to	 other
users.	If	a	reservation	is	made	through	the	portal	for	a	particular	date/time	in	the
future,	 the	 user	 will	 be	 charged	 for	 this	 time	 regardless	 of	 whether	 the
reservation	 is	 actually	 used,	 as	 the	Chameleon	 scheduling	 system	will	 have	 to
drain	 the	 appropriate	 part	 of	 the	 system	 to	 satisfy	 the	 reservation,	 even	 if	 the
nodes	requested	are	not	actually	used.	A	reservation	request	may	be	cancelled	in
which	case	no	charges	will	apply.

2.4.2	Project	Allocation	Size

Currently	 Chameleon	 is	 operating	 on	 a	 “soft	 allocation	 model”	 where	 each
project,	 if	 approved,	 will	 receive	 a	 startup	 allocation	 of	 20,000	 SUs	 for	 six
months	 that	can	be	both	 recharged	(i.e.,	more	SUs	can	be	added)	and	renewed
(i.e.,	the	duration	can	be	extended)	via	submitting	a	renew/recharge	request.	This
startup	 allocation	 value	 has	 been	 designed	 to	 respond	 to	 both	 PI	 needs	 (i.e.,
cover	 an	 amount	 of	 experimentation	 needed	 to	 obtain	 a	 significant	 result)	 and
balance	fairness	to	other	users	(it	represents	roughly	1%	of	testbed	six	months’
capacity).	 Requests	 for	 these	 startup	 projects	will	 receive	 a	 fast	 track	 internal
review	(i.e.,	users	can	expect	them	to	be	approved	within	a	few	days).

A	PI	 can	 apply	 for	multiple	 projects/allocations;	 however,	 the	 number	 of	 held
allocations	will	be	taken	into	account	during	review.

As	our	understanding	of	user	need	grows	we	expect	 the	Chameleon	allocation
model	 to	 evolve	 towards	 closer	 reflection	 of	 those	 needs	 in	 the	 form	 of	more
differentiated	allocations	that	will	allow	us	to	give	larger	allocations	to	users	for
longer	time.

Please	be	mindful	to	shutting	down	your	VMS	when	not	in	use	as	even	VMs	that
do	not	do	any	calculations	get	charged.	In	past	classes	we	had	students	that	did
not	shut	down	their	VMs	and	within	2	weeks	used	up	all	SUs	for	the	entire	class
of	70	students.	We	like	to	avoid	this.	In	future	cases	we	will	assign	the	grade	“F”

to	such	students,	as	is	customary	also	in	other	universities.

2.5	GETTING	STARTED	ON	CHAMELEON	CLOUD	☁�
We	describe	how	you	can	get	access	to	chameleon	cloud	under	the	assumption
that	you	are	a	student	or	a	researcher	that	joins	an	existing	project	on	Chameleon
cloud.	You	will	need	to	follow	the	following	steps:

2.5.1	Step	1:	Create	a	Chameleon	account

To	get	started	using	Chameleon	you	will	need	to	create	a	user	account.

You	will	be	asked	to	agree	to	the	Chameleon	terms	and	conditions	which,	among
others,	ask	you	to	acknowledge	the	use	of	Chameleon	in	your	publications.

Acknowledgement	 of	 support	 from	 the	 Chameleon	 project	 and	 the	 National
Science	 Foundation	 should	 appear	 in	 any	 publication	 of	 material,	 whether
copyrighted	 or	 not,	 that	 describes	 work	 which	 benefited	 from	 access	 to
Chameleon	cyberinfrastructure	resources.	The	suggested	acknowledgement	is	as
follows:	 “Results	 presented	 in	 this	 paper	 were	 obtained	 using	 the	 Chameleon
testbed	supported	by	the	National	Science	Foundation”.

As	part	of	creating	an	account	you	may	request	PI	status.	However	you	are	not	a
PI	as	you	will	be	joining	a	project.

2.5.2	Step	2:	Create	or	join	a	project

To	use	Chameleon,	you	will	need	to	be	associated	with	a	project	that	is	assigned
an	allocation.	This	means	that	you	either	need	to

1.	 apply	for	a	new	project	or

2.	 ask	the	PI	of	an	existing	Chameleon	project	to	add	you.

A	 project	 is	 headed	 by	 a	 project	 PI,	 typically	 a	 faculty	member	 or	 researcher
scientist	at	a	scientific	institution.	If	you	are	a	student	we	recommend	that	you
ask	your	professor	to	work	with	you	on	creating	a	project.	Please	note	that	you
must	not	create	a	project	by	yourself	and	that	you	indeed	need	to	work	with	your

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/chameleon/start.md
https://www.chameleoncloud.org/register
https://www.chameleoncloud.org/terms/view/site-terms/1.00/
https://www.chameleoncloud.org/user/projects/new/
https://chameleoncloud.readthedocs.io/en/latest/getting-started/faq.html?highlight=allocation#project-and-allocation-management
https://www.chameleoncloud.org/user/projects/new/
https://chameleoncloud.readthedocs.io/en/latest/getting-started/faq.html?highlight=allocation#my-pi-professor-colleague-already-has-a-chameleon-project-how-do-i-get-added-as-a-user-on-the-project
https://chameleoncloud.readthedocs.io/en/latest/getting-started/faq.html?highlight=allocation#my-pi-professor-colleague-already-has-a-chameleon-project-how-do-i-get-added-as-a-user-on-the-project

professor.

In	 case	 you	 need	 to	 do	 a	 project	 application	 typically	 consists	 of	 about	 one
paragraph	 description	 of	 the	 intended	 research	 and	 takes	 one	 business	 day	 to
process.

Enrolling	 you	 into	 an	 existing	 research	 or	 class	 project	 depends	 on	 the	 time
availability	of	the	project	lead	or	professor	of	your	class.	It	is	important	that	you
communicate	your	chameleon	cloud	account	name	to	the	project	lead	so	they	can
easily	 add	you.	Make	 sure	you	 really	give	 them	only	your	 chameleon	account
name	 and	 potentially	 your	 organizational	 e-mail,	 Firstname,	 and	 Lastname	 so
they	can	check	you	are	eligible	to	get	access.

	Indiana	University	students	that	take	the	e516	and	e616	classes
will	 have	 to	 fill	 out	 a	 google	 form	 in	 which	 they	 communicate	 the
chameleon	cloud	name.	You	can	already	apply	for	an	account	name,
but	do	not	apply	for	a	project.	If	you	nevertheless	apply	for	a	project,
we	will	hear	from	the	chameloen	cloud	administrators.	As	they	do	not
like	taht	because	you	have	not	followed	the	chameleon	cloud	project
policies	you	will	receive	a	grade	deduction	for	the	class.

2.5.3	Step	3:	Start	using	Chameleon

Now	 that	 you	 have	 enrolled	 and	 once	 you	 are	 added	 to	 the	 project	 by	 your
project	lead	you	can	start	using	chameleon	cloud.	However	be	reminded	that	you
ought	 to	 shut	 down	 the	 resources/VMs	whenever	 they	 are	 not	 in	 use	 to	 avoid
unnecessary	charging.	Remember	the	project	has	limited	time	on	chameleon	and
any	unused	time	will	be	charged	against	the	project.

Chameleon	provides	 two	 types	of	 resources	with	 links	 to	 their	 respective	users
guides	next:

Bare	 Metal	 User	 Guide	 will	 tell	 you	 how	 to	 use	 Chameleon	 bare	 metal
resources	 which	 provide	 strong	 isolation	 and	 allow	 you	 maximum	 control
(reboot	to	new	operating	system,	reboot	the	kernel,	etc.)

OpenStack	 KVM	 User	 Guide	 will	 tell	 you	 how	 to	 get	 started	 with

https://chameleoncloud.readthedocs.io/en/latest/technical/baremetal.html?highlight=bare%20metal
https://chameleoncloud.readthedocs.io/en/latest/technical/kvm.html?highlight=kvm

Chameleon’s	 OpenStack	 KVM	 cloud	 which	 is	 a	 multi-tenant	 environment
providing	weak	performance	isolation.

If	 you	 have	 any	 questions	 or	 encounter	 any	 problems,	 you	 can	 check	 out	 our
User	FAQ,	or	submit	a	ticket.

As	part	of	the	classes	you	will	need	to	first	pass	a	cloud	security	drivers	licence
test.	The	test	is	designed	so	that	you	think	about	gaining	access	to	a	VM	securely
and	how	to	properly	secure	 the	VM.	Once	passed,	access	 is	 typically	provided
by	midterm	 time.	You	 are	 not	 allowed	 to	 constantly	 run	VM’s	 and	must	 shut
them	down	if	not	in	use.	You	will	get	point	deductions	if	we	detect	you	do	not
obey	by	this	rule.	We	have	access	to	log	files	about	your	VM	usage.

2.6	OPENSTACK	VIRTUAL	MACHINES	☁�
OpenStack	 is	 an	 Infrastructure	 as	 a	Service	 (IaaS)	 platform	 that	 allows	you	 to
create	and	manage	virtual	environments.	Chameleon	provides	an	installation	of
OpenStack	version	2015.1	(Kilo)	using	the	KVM	virtualization	technology.

Since	 the	 KVM	 hypervisor	 is	 used	 on	 this	 cloud,	 any	 virtual	 machines	 you
upload	must	be	compatible	with	KVM.

This	 section	 provides	 basic	 information	 about	 how	 to	 use	 the	OpenStack	web
interface	and	provides	some	 information	specific	 to	using	OpenStack	KVM	on
Chameleon.

2.6.1	Web	Interface

An	easy	way	to	use	OpenStack	KVM	on	Chameleon	is	via	the	OpenStack	web
interface	 also	 known	 as	 Horizon.	 You	 log	 into	 the	 web	 interface	 using	 your
Chameleon	username	and	password.	If	you	change	your	Chameleon	password	in
the	portal,	that	change	will	propagate	to	the	OpenStack	KVM	interface	in	about
5	minutes.	See	Figure	2

The	initial	log	in	page	appears	as:

https://chameleoncloud.readthedocs.io/en/latest/getting-started/faq.html?highlight=question
https://www.chameleoncloud.org/user/help/
https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/chameleon/user-guide.md
https://openstack.tacc.chameleoncloud.org/dashboard

Figure	2:	Chameleon	login

After	a	successful	 log	 in,	you	will	 see	 the	Overview	page	as	shown	next.	This
page	provides	a	summary	of	your	current	and	recent	usage	and	provides	links	to
various	other	pages.	Most	of	the	tasks	you	will	perform	are	done	via	the	menu	on
the	 lower	 left	and	will	be	described	next.	One	 thing	 to	note	 is	 that	on	 the	 left,
your	current	project	is	displayed.	If	you	have	multiple	Chameleon	projects,	you
can	 change	 which	 of	 them	 is	 your	 current	 project.	 All	 of	 the	 information
displayed	 and	 actions	 that	 you	 take	 apply	 to	 your	 current	 project.	 So	 in	 the
screen	shot	Figure	3,	the	quota	and	usage	apply	to	the	current	project	you	have
selected	and	no	information	about	your	other	projects	is	shown.	See	Figure	3

Figure	3:	Overview	page

2.6.1.1	Managing	Virtual	Machine	Instances

One	 of	 the	 main	 activities	 you’ll	 be	 performing	 in	 this	 web	 interface	 is	 the
management	 of	 virtual	 machines,	 or	 instances.	 You	 do	 this	 via	 the	 Instances
page	that	is	reachable	from	the	menu	in	the	lower	left	of	the	Overview	page.	An
example	Instances	page	is	shown	next.	For	instances	that	you	have	running,	you
can	 click	on	 the	 name	of	 the	 instance	 to	 get	more	 information	 about	 it	 and	 to
access	the	VNC	interface	to	the	console.	The	dropdown	menu	to	the	left	of	the
instance	lets	you	perform	a	variety	of	tasks	such	as	suspending,	terminating,	or
rebooting	the	instance.	See	Figure	4

Figure	4:	Virtual	Machine	instances

The	 Instances	 page	 also	 lets	 you	 create	 new	 virtual	 machines	 by	 using	 the
‘Launch	Instance’	button	in	the	upper-right.	When	you	click	this	button,	a	dialog
window	pops	up.	In	the	first	‘Details’	tab,	you	select	the	‘Instance	Boot	Source’
of	the	instance,	which	is	either	an	‘Image’,	a	‘Snapshot’	(an	image	created	from
a	running	virtual	machine),	or	a	‘Volume’	(a	persistent	virtual	disk	that	can	be
attached	to	a	virtual	machine).	If	you	select	‘Boot	from	image’,	the	Image	Name
dropdown	presents	a	list	of	virtual	machine	images	that	we	have	provided,	that
other	Chameleon	users	have	uploaded	and	made	public,	or	images	that	you	have
uploaded	for	yourself.	If	you	select	‘Boot	from	snapshot’,	the	Instance	Snapshot
dropdown	presents	a	 list	of	virtual	machine	images	that	you	have	created	from
your	running	virtual	machines.

On	 the	 Details	 tab,	 you	 also	 provide	 a	 name	 for	 this	 instance	 (to	 help	 you
identify	 instances	 that	 you	 are	 running),	 and	 select	 the	 amount	 of	 resources
(Flavor)	to	allocate	to	the	instance.	If	you	select	different	flavors	from	the	Flavor
dropdown,	their	characteristics	are	displayed	on	the	right.	See	Figure	5

Figure	5:	Launcher	window

The	next	tab	is	‘Access	&	Security’,	where	you	select	an	SSH	keypair	that	will
be	 inserted	 into	your	 virtual	machine.	These	keypairs	 can	be	uploaded	via	 the
main	‘Access	&	Security’	section.	You	will	need	to	select	a	keypair	here	to	be
able	 to	 access	 an	 instance	 created	 from	 one	 of	 the	 public	 images	 Chameleon
provides.	These	images	are	not	configured	with	a	default	root	password	and	you
will	not	be	able	to	log	in	to	them	without	configuring	an	SSH	key.	See	Figure	6

Figure	6:	Access	window

Next	is	‘Networking’,	where	you	select	which	network	should	be	associated	with
the	 instance.	 Click	 the	 +	 next	 to	 your	 your	 project’s	 private	 network
(PROJECT_NAME-net),	not	ext-net.	See	Figure	7

Figure	7:	Networking	window

Once	 you	 do	 this,	 you	 can	 Launch	 your	 instance	 and	 the	 Instances	 page	 will
show	progress	as	it	starts.

If	 you	would	 like	 to	 assign	 a	 public	 IP	 address	 to	 your	VM,	 you	 can	 do	 that
while	 it	 is	 booting	 up.	 Click	 on	 the	 dropdown	 under	 Actions	 and	 choose
Associate	 Floating	 IP.	 Choose	 an	 IP	 from	 the	 IP	 Address	 menu	 and	 click
Associate.	If	there	are	no	addresses	available,	click	the	+	and	follow	the	prompts
to	add	one.	See	Figure	8

Figure	8:	Floating	IP	window

OpenStack	injects	your	SSH	key	into	the	VM	and	you	can	use	the	corresponding
private	SSH	key	to	log	in	to	the	VM.	You	will	need	to	use	the	public	IP	assigned
to	 your	 VM	 to	 connect	 from	 outside	 of	 Chameleon,	 or	 connect	 through	 an
existing	instance	that	both	a	public	and	private	IP.

Note	that	the	images	we	provide	do	not	allow	SSH	into	the	root	account.	For
root	 access,	 SSH	 into	 the	 instance	 as	 user	 ‘cc’	 and	 then	 use	 the	 sudo
command	to	become	root.

We	 have	 enabled	 auto-login	 for	 the	 cc	 user	 on	 the	 console	 of	 our	 supported
images.	This	should	aid	in	debugging	if	you	are	unable	to	reach	the	instane	via
ssh	for	some	reason.	See	Figure	9

Figure	9:	Console

2.6.1.2	Snapshots

The	 instance	 list	 page	 shown	 previously	 has	 an	 option	 ‘Create	 Snapshot’	 that
allows	you	to	save	a	copy	of	the	disk	contents	of	a	running	virtual	machine.	This
allows	you	 to	 start	new	virtual	machines	 in	 the	 future	 that	are	 identical	 to	 this
one	 and	 is	 an	 easy	 way	 to	 save	 any	 changes	 you	 make	 to	 a	 running	 virtual
machine.

2.6.1.3	Firewall	(Access	Security)

Each	project	has	control	over	 their	own	firewall	settings	for	 their	 instances.	At
minimum	 you’ll	 probably	 want	 to	 allow	 SSH	 access	 so	 you	 can	 reach	 your
instances.

To	 enable	 this	 traffic,	 you	 need	 to	 configure	 the	 security	 group	 used	 by	 your
virtual	machine.	You	can	see	a	list	of	your	security	groups	using	the	“Access	&
Security”	link	on	the	left.	See	Figure	10

Figure	10:	Security	groups

To	edit	a	security	group,	click	on	“Edit	Rules”.	This	opens	a	page	showing	the
existing	rules	in	the	security	group.	See	Figure	11

Figure	11:	Editing	a	security	group

Click	 on	 “Add	 Rule”	 and	 choose	 the	 SSH	 rule	 from	 the	 list,	 and	 click	 Add.
Modifications	are	automatically	propagated	to	the	OpenStack	cloud.	Feel	free	to
add	other	rules	as	necessary.	See	Figure	12

Figure	12:	Add	a	security	group

2.6.2	OpenStack	REST	Interfaces

The	OpenStack	REST	Interfaces	are	supported	on	Chameleon	over	secure	HTTP
connections.	You	can	download	your	OpenStack	credentials	 file	 from	 the	web
interface	via	the	“Access	&	Security”	link	in	the	left	of	any	page	and	then	click
on	the	“API	Access”	link	on	the	top.

You	 can	 then	 install	 the	 OpenStack	 command	 line	 clients	 following	 these
instructions.	If	using	pip,	we	recommend	setting	up	a	virtualenv.

The	SSL	certificate	used	by	Chameleon	is	trusted	by	most	operating	systems,	so
you	 should	 not	 have	 to	 provide	 any	 extra	 options	 to	 OpenStack	 commands,
i.e.	 “nova	 list”	 should	 work.	 If	 your	 command-line	 tool	 complains	 about	 the
certificate,	download	the	Mozilla	CA	bundle	from	the	cURL	website	and	run	the
OpenStack	client	tools	with	the	–os-cacert	cacert.pem	arguments.

http://docs.openstack.org/user-guide/common/cli_install_openstack_command_line_clients.html
http://curl.haxx.se/docs/caextract.html

2.6.3	Downloading	and	uploading	data

You	 can	 use	 the	OpenStack	 command	 line	 clients	 to	 download	 data	 from	 and
upload	data	to	Chameleon	clouds.	Configure	your	environment	by	following	the
“OpenStack	 REST	 Interfaces”	 previous	 section,	 then	 use	 the	 following
commands:

glance	image-download	to	download	images	and	snapshots	from	Glance
glance	image-create	to	upload	images	and	snapshots	to	Glance
cinder	upload-to-image	to	convert	a	Cinder	volume	to	a	Glance	image
cinder	create	[--image-id	<image-id>]	[--image	<image>]	 to	 create	 a	 Cinder	 volume	 from	 a
Glance	image

2.7	CLOUDMESH	OPENSTACK	COMMAND	LINE	INTERFACE
☁�
OpenStack	on	Chameleon	delivers	KVM	based	compute	resources	to	provision
virtual	machines.	It	provides	various	image	types	on	which	we	can	deploy	tools
and	 software	needed	 for	 the	class	 and	projects.	We	will	you	 through	 the	basic
steps	of	getting	access	to	OpenStack	Chameleon	cloud	under	the	class	allocation.
Next,	we	will	introduce	you	the	cloudmesh	command	line	tools	which	you	can
use	in	your	projects.	Naturally	using	the	GUI	for	your	projects	is	not	sufficient
as	setting	up	your	environment	will	need	steps	to	be	executed	by	hand	which	is
not	 sufficient.	 It	 is	 a	 goal	 of	 this	 class	 that	 you	 create	 your	 environment	 in	 a
reproducible	 fashion	 via	 scripts.	 Hence,	 although	 the	 Web	 interface	 called
OpenStack	Horizon	is	initially	attractive,	we	should	make	sure	to	move	on	to	the
commandline	 interfaces.	 Furthermore,	 it	 is	 often	 difficult	 to	 resolve	 technical
issues	 as	 the	 command	 line	 tools	 generate	 full	 debugging	messages	 in	 case	 of
issues	 and	 copy	 and	 past	 into	 help	windows	 is	much	 easier	 and	 efficient	 than
copy	and	past	incomplete	screenshots.

One	 important	 factor	 for	 using	 cloudmesh	 shell	 is	 that	 it	 not	 only	 works	 for
chameleon	 cloud	 but	 also	 for	AWS	and	Azure.	We	 are	 hoping	 to	 add	Google
also	which	is	already	in	our	preliminary	code.

	Cloudmesh	Commandline	Interface	Demonstration

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/chameleon/cli.md
https://www.youtube.com/watch?v=GgNUXYaB7kQ

2.7.1	Instalation	of	Cloudmesh	Client

We	 discuss	 how	 to	 install	 cloudmesh	 in	 the	 [Cloudmesh	 manual]
[https://cloudmesh.github.io/cloudmesh-manual/installation/install.html]

We	assume	that	your	public	key	is	located	at	~/.ssh/id_rsa.pub

We	 assume	 you	 have	 the	 file	 ~/.cloudmesh/cloudmesh.yaml	 that	 is	 created	 during	 the
instalation	 process.	 Please	 also	 make	 sure	 that	 the	 file	 ~/.cloudmesh/names.yaml	 Is
properly	configured	for	the	class.	Typically	it	will	look	like

Where	NNN	is	the	last	three	gigits	from	your	hid	that	we	place	in	github	and	for
accountname,	please	chose	your	chameleon	account	name.	If	you	are	not	taking
any	of	 our	 classes	 and	you	do	not	 have	 a	 github	directory	 that	we	 created	 for
you,	please	use

instead.	Whenever	 you	 start	 a	 new	 vm,	 the	 counter	 of	 the	 vm	 gets	 increased,
guranteeing	a	unique	virtual	machine	name	across	all	colaborators	and	your	own
virtual	machines.

We	also	assume	you	have	called	the	command

and	are	running	the	MongoDB	cloudmesh	service	which	you	can	check	with

Once	you	install	cloudmesh	you	need	to	modify	the	~/.cloudmesh/cloudmesh.yaml	file	to	add
your	username	and	password.	Make	sure	to	properly	protect	this	file	as	discussed
in	the	manual.

To	 add	 the	 username	 and	 password,	 you	 can	 use	 an	 editor,	 or	 execute	 on	 the
commandline	with	the	commands

path:	/Users/grey/.cloudmesh/name.yaml

schema:	NNN-accountname-{counter}

counter:	1

path:	/Users/grey/.cloudmesh/name.yaml	

schema:	accountname-{counter}

counter:	1

cms	init

$	cms	admin	mongo	status

$	cms	config	set	chameleon.OS_USERNAME=YOURUSERNAME

$	cms	config	set	chameleon.OS_PASSWORD=YOURPASSWORD

They	will	change	the	values	in	the	yaml	file	at

cloudmesh.cloud.chameleon.credentials.

Next	test	out	if	you	can	see	some	images	with

You	will	see	a	table	similar	to

To	see	the	flavors	or	sizes,	you	can	use

Which	will	return	something	like

Cloudmesh	 reads	 the	 preset	 variables	 in	 the	 cloudmesh.yaml	 file	 to	 start	 new
virtual	machines.	To	see	them	you	can	look	at	the	yaml	file	or	use	the	command

To	start	a	VM	simply	use

You	will	see	something	similar	to

cms	image	list	--refresh

+--------------------------+--------------+--------------+-------------+--------+-----------+

|	Name																					|	Size	(Bytes)	|	MinDisk	(GB)	|	MinRam	(MB)	|	Status	|	Driver				|

+--------------------------+--------------+--------------+-------------+--------+-----------+

|	CC-Ubuntu18.04											|	982843392				|	0												|	0											|	ACTIVE	|	openstack	|

|	CC-Ubuntu16.04											|	844759040				|	0												|	0											|	ACTIVE	|	openstack	|

|	CC-Ubuntu18.04-20190822		|	982056960				|	0												|	0											|	ACTIVE	|	openstack	|

|	CC-Ubuntu16.04-20190822		|	844824576				|	0												|	0											|	ACTIVE	|	openstack	|

...

cms	flavor	list	flavor	--refresh

+----------------+-------+-------+------+

|	Name											|	VCPUS	|	RAM			|	Disk	|

+----------------+-------+-------+------+

|	m1.tiny								|	1					|	512			|	1				|

|	m1.small							|	1					|	2048		|	20			|

|	m1.medium						|	2					|	4096		|	40			|

|	m1.large							|	4					|	8192		|	80			|

|	m1.xlarge						|	8					|	16384	|	160		|

|	storage.medium	|	1					|	4096		|	2048	|

|	m1.xxlarge					|	8					|	32768	|	160		|

|	m1.xxxlarge				|	16				|	32768	|	160		|

+----------------+-------+-------+------+

$	cms	config	get	chameleon.default

cms	vm	boot

#	--

#	Create	Server

#	--

				Name:					benchmark-gregor-vm-684

				User:					cc

				IP:							129.114.33.243

				Image:				CC-Ubuntu14.04

To	log	into	the	vm	you	can	use

To	set	a	different	vm,	you	could	use	the	command	line	parameters	that	you	can
find	out	with

but	 in	 case	 you	 always	 want	 to	 use	 the	 same	 parameters	 it	 is	 much	 mor
conveneint	to	use	our	config	set	command	with

On	 chameleon	 cloud	 images	 with	 CC	 are	 cameleon	 cloud	 santioned	 images.
They	include	some	monitoring	extensions	and	use	the	username	cc	for	login.

2.7.2	Floating	IP	Address

We	have	configured	cloudmesh	to	automatically	assign	a	floating	ip	address	so
you	can	use	that	to	log	into	the	vm.

to	view	it,	you	can	use	the	command

To	delete	the	vm	simply	say

2.8	OPENSTACK	COMMAND	LINE	INTERFACE	☁�
OpenStack	itself	provides	a	new	integrated	openstack	commandline	client.	This
client	can	use	configuration	 file	 that	allows	us	 to	 interact	with	 the	cloud	while
using	the	stored	passsword	and	username.

				Size:					m1.small

				Public:			True

				Key:						gregor

				location:	None

				timeout:		360

				secgroup:	default

				group:				cloudmesh

				groups:			['cloudmesh']

cms	ssh

cms	vm	help

$	cms	config	set	cloud.chameleon.default.size=CC-Ubuntu18.04

$	cms	config	set	cloud.chameleon.default.image=m1.small

$	cms	config	set	cloud.chameleon.default.username=cc

$	cms	vm	list	--refresh

$	cms	vm	delete

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/chameleon/cli-openstack.md

However,	we	recommend	that	you	just	use	 the	cloudmesh	shell	documented	 in
Section	2.7	as	 it	not	only	allows	you	 to	 interact	with	chamelon	cloud,	but	also
with	AWS	and	Azure	and	infuture	also	Google	cloud.

2.8.0.1	Creating	OpenStack	RC	via	the	editor

The	easiest	way	is	to	create	this	file	by	hand	while	copying	the	following	lines
into	 the	 file	 ~/.cloudmesh/chameleon/cc-openrc.sh.	 Make	 sure	 that	 you	 place	 the	 file	 in	 a
location	you	easily	be	found:

The	easiest	way	is	to	download	a	template	from	pur	book	with

The	‘cc-openrc.sh’	looks	as	follows:

Please	make	 sur	 to	 replace	 <put	your	chameleon	cloud	username	here>	 with	 your	 chameleon
cloud	username.	Now	whenever	you	need	top	access	chameleon	cloud	you	can
use	the	command

To	 simplify	 the	 configuration	 and	 documentation,	we	 have	 included	 two	 shell
environment	variables.	The	first	one	is	CC_PROJECT,	that	specifies	the	project	number.
The	second	one	is	a	prefix	that	you	will	use	for	VMS	and	keys	as	we	are	using	a
shared	 project.	 This	 way	 we	 can	 see	 which	 VMS	 and	 which	 keys	 have	 been
uploaded	and	keep	the	names	of	them	unique.

$	mkdir	-p	~/.cloudmesh/chameleon

$	wget	https://raw.githubusercontent.com/cloudmesh/book/master/examples/chameleon/cc-openrc.sh	-O	~/.cloudmesh/chameleon/cc-openrc.sh

#!/bin/bash

export	CC_PROJECTID="CH-819337"

export	CC_PREFIX="albert-111"	#	repalce	with	your	username	and	hid	number

export	OS_AUTH_URL=https://openstack.tacc.chameleoncloud.org:5000/v2.0

#	With	Keystone	you	pass	the	keystone	password.

echo	"Please	enter	your	OpenStack	Password:	"

read	-sr	OS_PASSWORD_INPUT

export	OS_PASSWORD=$OS_PASSWORD_INPUT

export	OS_TENANT_ID=$CC_PROJECTID

export	OS_TENANT_NAME=$CC_PROJECTID

export	OS_PROJECT_NAME=$CC_PROJECTID

export	OS_USERNAME="<put	your	chameleon	cloud	username	here>"

export	OS_REGION_NAME="RegionOne"

if	[-z	"$OS_REGION_NAME"];	then	unset	OS_REGION_NAME;	fi

$	source	~/.cloudmesh/chameleon/cc-openrc.sh

2.8.0.2	Creating	OpenStack	RC	via	the	GUI

In	case	you	do	not	want	to	use	the	commandline	option	to	obtain	an	RC	sample,
you	can	obtain	the	OpenStack	RC	file	with	the	OpenStack	Dashboard.

https://openstack.tacc.chameleoncloud.org/dashboard

Login	 and	 chose	 your	 project	 number	 for	 this	 project.	 Confirm	 your	 project
number	and	find	Access	&	Security	 on	 the	 left	menu.	The	Access	&	Security
page	 has	 tabs	 and	 choose	 API	 Access	 to	 download	 credentials	 on	 a	 local
machine.	Click	Download	OpenStack	RC	File	to	download	CH-$PROJECTID-
openrc.sh	 file	 on	 your	 machine	 (see	 Figure	 13).	 Every	 time	 you	 use	 nova
command	line	tools,	the	file	should	be	loaded	on	your	terminal.

Figure	13:	Access	and	Security	GUI

Just	 as	 in	 the	 previous	 section	 please	 add	 the	 following	 to	 your	 openrc.sh	 file
while	adapting	it	appropriately.

$	export	CC_PROJECT=CH-819337

$	export	CC_PREFIX=111-albert

$	mkdir	-p	~/.cloudmesh/chameleon

$	mv	~/Downloads/CH-$CC_PROJECT-openrc.sh	~/.cloudmesh/chameleon/cc-openrc.sh

$	export	CC_PROJECT=CH-819337

$	export	CC_PREFIX=111-albert

https://openstack.tacc.chameleoncloud.org/dashboard

Once	you	source	the	file,	you	can	use	nova	command	line	tools	without	sourcing
it	again.	The	environment	variables	are	enabled	while	your	terminal	is	alive.	In
case	 you	 have	 not	 stored	 the	 original	RC	 file	 in	 the	Downloads	 folder,	 please
copy	it	from	that	location	instead.

2.8.1	CLI	to	Manage	Virtual	Machines

OpenStack	 provides	 a	 commandline	 tool	 called	 nova	 to	 manage	 virtual
machines.	To	install	it	please	use	the	command

Now	you	can	look	at	the	many	options	this	command	provides	with

You	will	see	an	output	similar	to

with	ist	pages	and	pages	long	information.	Please	study	it.

To	list	the	images	say

You	will	see	an	output	similar	to

To	list	the	flavors	you	can	use	the	command

which	will	result	in	an	output	similar	to

$	pip	install	python-openstackclient

$	openstack	help

openstack	[--version]	[-v	|	-q]	[--log-file	LOG_FILE]	[-h]	[--debug]

										...

openstack	image	list

+----------------------------------+------------------+--------+---------+

|	ID																															|	Name													|	Status	|	Server		|

+----------------------------------+------------------+--------+---------+

|	be46bd5a-c4a5-4495-ad30-35618...	|	CC-C7-autologin		|	ACTIVE	|									|

|	1fe5138b-300b-4b30-8d22-e7287...	|	CC-CentOS7							|	ACTIVE	|									|

...

$	openstack	flavor	list

+----+----------------+-------+------+-----------+-------+-----------+

|	ID	|	Name											|			RAM	|	Disk	|	Ephemeral	|	VCPUs	|	Is	Public	|

+----+----------------+-------+------+-----------+-------+-----------+

|	1		|	m1.tiny								|			512	|				1	|									0	|					1	|	True						|

|	2		|	m1.small							|		2048	|			20	|									0	|					1	|	True						|

|	3		|	m1.medium						|		4096	|			40	|									0	|					2	|	True						|

|	4		|	m1.large							|		8192	|			80	|									0	|					4	|	True						|

|	5		|	m1.xlarge						|	16384	|		160	|									0	|					8	|	True						|

|	6		|	storage.medium	|		4096	|	2048	|									0	|					1	|	True						|

2.8.2	KeyPair	Registration

⚠�	This	should	be	substituted	by	the	openstack	command

Once	you	have	completed	the	installation	of	nova,	you	also	need	to	register	a	ssh
keypair	with	openstack	to	be	able	to	log	into	the	virtual	machines	that	you	start.
To	register	your	public	key,	use:

Once	you	 register	your	key,	you	can	confirm	 if	your	key	 registration	has	been
successful	by	listing	the	keys:

You	will	see	an	output	similar	to:

2.8.3	Start	a	new	VM	instance

To	start	new	instances	you	can	use	the	nova	boot	command.	It	will	start	a	VM
instance.	You	can	use	some	parameters	to	specify	which	base	image	and	a	server
size	 we	 will	 use	 with	 a	 name.	 We	 use	 CC-Ubuntu16.04	 base	 image	 in	 this
section	which	is	an	official	Ubuntu	16.04	image	provided	by	Chameleon	project.

where	the	01	indicates	the	instance	number.	Note	that	we	will	be	terminating	and
deleting	any	VM	in	our	project	that	does	not	follow	this	naming	convention.

To	list	all	servers	you	can	use	the	command

|	7		|	m1.xxlarge					|	32768	|		160	|									0	|					8	|	True						|

|	8		|	m1.xxxlarge				|	32768	|		160	|									0	|				16	|	True						|

+----+----------------+-------+------+-----------+-------+-----------+

$	openstack	keypair	create	--public-key	~/.ssh/id_rsa.pub	${CC_PREFIX}-key				

$	openstack	keypair	list

+-----------------+---+

|	Name												|	Fingerprint																																					|

+-----------------+---+

|	$CC_PREFIX-key		|	cf:04:06:aa:8b:76:af:77:aa:0a:b5:87:ff:0f:ba:97	|

+-----------------+---+

$	openstack	server	create	\

			--image	CC-Ubuntu16.04	\

			--key-name	${CC_PREFIX}-key	\

			--flavor	m1.small	\

			${CC_PREFIX}-01

openstack	server	list

2.8.4	Floating	IP	Address

If	your	new	VM	instance	is	up	and	running,	it	needs	an	external	ip	address	which
is	also	called	floating	IP	address.	A	floating	IP	allows	you	to	get	access	to	this
VM	from	the	internet.	Note	that	chameleon	has	a	limited	number	of	floating	IP
addresses	 and	 it	 is	 best	 to	 return	 them	 if	 not	 in	 use.	 If	 chameleon	 runs	 out	 of
floating	 IP	 addresses,	 please	 submit	 a	 ticket	 to	 chameleon.	 However	 in	many
cases	the	VM	may	only	need	a	an	internal	IP	address	as	a	default.	 In	case	you
need	 to	 access	 others,	 you	 could	 even	 tunnel	 all	 connections	 through	 a	 single
floating	IP.	naturally	this	would	limit	data	transfers	in	and	out	of	chameleon,	but
is	a	recommended	way	to	deal	with	limited	floating	IPs.

Let	us	showcase	how	to	associate	a	floating	IP	address	and	access	it	via	SSH.

Now	we	have	a	IP	address	 to	assign	to	a	VM	instance.	In	this	section,	we	will
associate	129.114.111.37	to	our	albert-111-01	VM	instance	by:

Once	you	completed	this	step,	you	are	now	able	to	SSH	into	your	VM	instance.
Confirm	ACTIVE	state	in	your	VM	to	get	access.

where	111	is	the	number	from	your	hid	and	01	is	the	instance	number

Note	 that	 cc	 is	 login	 name	 your	 VM	 if	 you	 start	 a	 VM	 with	 the	 official
Chameleon	cloud	image.

2.8.5	Termination	of	VM	Instance

If	you	completed	your	work	on	your	VM	instance,	you	have	 to	 terminate	your
VM	and	release	a	floating	IP	address	associated	with.	For	example,	we	terminate

	nova	floating-ip-create	ext-net

	+---------------+----------------+-----------+----------+---------+

	|	Id												|	IP													|	Server	Id	|	Fixed	IP	|	Pool				|

	+---------------+----------------+-----------+----------+---------+

	|	13dc309e-	...	|	129.114.111.37	|	-									|	-								|	ext-net	|

	+---------------+----------------+-----------+----------+---------+

$	nova	floating-ip-associate	albert-111-01	129.114.111.37

|	f19e1...	|	albert-111-01	|	ACTIVE	|	-	|	Running	|	$CC_PROJECT-net=	|

|										|																								|			|									|				192.168.0.13,	|

|										|																								|			|									|			129.114.111.37	|

$	ssh	cc@129.114.111.37

our	first	instance	and	the	IP	address	by:

Please	note	that	when	using	delete	you	will	delete	the	VM.	In	case	you	still	need
to	use	it	use	stop	and	to	restart	it	use	start	instead.

2.9	OPENSTACK	HORIZON	GRAPHICAL	USER	INTERFACE	☁�

	Horizon,	Starting	a	VM

2.9.1	Configure	resources

Once	your	 lease	 is	 started,	you	are	almost	 ready	 to	 start	 an	 instance.	But	 first,
you	need	to	make	sure	that	you	will	be	able	to	connect	to	it	by	setting	up	a	key
pair.	This	only	has	to	be	done	once	per	user	per	project.

Go	to	Project	>	Compute	>	Access	&	Security,	then	select	the	Key	Pairs	tab.	See
Figure	14

$	nova	delete	$CC_PREFIX-01

$	nova	floating-ip-delete	129.114.111.37

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/chameleon/horizon.md
https://www.youtube.com/watch?v=ofAVUX1gvUg

Figure	14:	Key	Pairs	Tab

Here	you	can	either	ask	OpenStack	 to	create	an	SSH	key	pair	 for	you	(via	 the
“Create	 Key”	 Pair	 button),	 or,	 if	 you	 already	 have	 an	 SSH	 key	 pair	 on	 your
machine	and	are	happy	to	use	it,	click	on	“Import	Key	Pair”.

If	you	chose	to	import	a	key	pair,	you	will	be	asked	to	enter	a	name	for	the	key
pair,	for	example	laptop.	In	the	“Public	Key”	box,	copy	the	content	of	your	SSH
public	key.	Typically	it	will	be	at	~/.ssh/id_rsa.pub.	On	Mac	OS	X,	you	can	run
in	a	terminal:	cat	~/.ssh/id_rsa.pub		pbcopy	It	copies	the	content	of	the	public	key	to	your
copy/paste	 buffer.	 Then	 you	 can	 simply	 paste	 in	 the	 “Public	 Key”	 box.	 See
Figure	15

Figure	15:	Public	Key

Then,	click	on	the	blue	“Import	Key	Pair”	button.	This	should	show	you	the	list
of	key	pairs,	with	the	one	you	just	added.	See	Figure	16

Figure	16:	Import	key	pair

For	 those	 already	 familiar	 with	OpenStack,	 note	 that	 Security	Groups	 are	 not
functional	 on	 bare-metal.	 All	 instances	 ports	 are	 open	 to	 the	 Internet	 and	 any
security	group	rule	you	add	will	not	be	respected.

Now,	go	to	the	“Instances”	panel.	See	Figure	17

Figure	17:	VM	Instances

Click	 on	 the	 “Launch	 Instance”	 button	 in	 the	 top	 right	 corner.	 Select	 a
reservation	in	the	Reservation	box,	pick	an	instance	name	(in	this	example	my-
first-instance)	and	in	the	Image	Name	list	select	our	default	environment	named
CC-CentOS7.	If	you	have	multiple	key	pairs	registered,	you	need	to	select	one	in
the	 “Access	&	 Security”	 tab.	 Finally,	 click	 on	 the	 blue	 “Launch”	 button.	 See
Figure	18

Figure	18:	Launch	a	VM

The	instance	will	show	up	in	the	instance	list,	at	first	in	Build	status.	It	takes	a
few	 minutes	 to	 deploy	 the	 instance	 on	 bare-metal	 hardware	 and	 reboot	 the
machine.	See	Figure	19

Figure	19:	Status	Window	(a)

After	a	few	minutes	the	instance	should	become	in	Active	status	and	the	Power
State	should	be	Running.	See	Figure	20

Figure	20:	Status	Window	(b)

At	this	point	the	instance	might	still	be	booting:	it	might	take	a	minute	or	two	to
actually	 be	 accessible	 on	 the	 network	 and	 accept	 SSH	 connections.	 In	 the
meantime,	you	can	attach	a	floating	IP	to	the	instance.	Click	on	the	“Associate
Floating	IP”	button.	You	should	get	a	screen	like	this	one:	Figure	21

Figure	21:	Floating	IP

If	there	are	no	unused	floating	IP	already	allocated	to	your	project,	click	on	the	+
button.	In	the	window	that	opens,	select	the	ext-net	pool	if	not	already	selected

by	default	and	click	on	the	blue	Allocate	IP	button.	See	Figure	22

Figure	22:	Allocate	the	IP

You	will	be	returned	to	the	previous	window.	The	correct	value	for	“Port	to	be
associated”	should	already	be	selected,	so	you	only	have	to	click	on	“Associate”.
See	Figure	23

Figure	23:	Associate	the	IP

This	should	send	you	back	to	the	instance	list,	where	you	can	see	the	floating	IP
attached	 to	 the	 instance	 (you	 may	 need	 to	 refresh	 your	 browser	 to	 see	 the
floating	IP).	See	Figure	24

Figure	24:	Status	of	the	IP	Association

2.9.2	Interact	with	resources

Now	you	should	be	able	to	connect	to	the	instance	via	SSH	using	the	cc	account.
In	a	terminal,	type	ssh	cc@floating_ip,	in	our	example	this	would	be

SSH	will	probably	tell	you:

Type	yes	and	press	Enter.	You	should	arrive	to	a	prompt	like	this	one:
[cc@my-first-instance	~]$

If	 you	 notice	 SSH	 errors	 such	 as	 connection	 refused,	 password	 requests,	 or
failures	 to	 accept	 your	 key,	 it	 is	 likely	 that	 the	 physical	 node	 is	 still	 going
through	 the	 boot	 process.	 In	 that	 case,	 please	wait	 before	 retrying.	Also	make
sure	that	you	use	the	cc	account.	If	after	10	minutes	you	still	cannot	connect	to
the	machine,	please	open	a	ticket	with	our	help	desk.

You	can	now	check	whether	 the	resource	matches	its	known	description	in	 the

$	ssh	cc@130.202.88.241

The	authenticity	of	host	}130.202.88.241

(130.202.88.241)	cannot	be	established.	RSA	key	fingerprint

is	5b:ca:f0:63:6f:22:c6:96:9f:c0:4a:d8:5e:dd:fd:eb.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?

https://www.chameleoncloud.org/user/help/

resource	registry.	For	this,	simply	run:	sudo	cc-checks	-v

As	 of	 03/30/2018,	 the	 cc-checks	 command	 may	 not	 work	 on	 the	 images	 in
Chameleon	 cloud.	 You	 may	 have	 to	 ignore	 (not	 run)	 this	 command.	 See
Figure	25

Figure	25:	cc-check	program

The	cc-checks	program	prints	the	result	of	each	check	in	green	if	it	is	successful
and	red	if	it	failed.

You	can	now	run	your	experiment	directly	on	the	machine	via	SSH.	You	can	run
commands	with	root	privileges	by	prefixing	them	with	sudo.	To	completely	switch
user	and	become	root,	use	the	sudo	su	-	root	command.

2.9.2.1	Snapshot	an	instance

All	 instances	 in	Chameleon,	whether	KVM	or	bare-metal,	are	 running	off	disk
images.	 The	 content	 of	 these	 disk	 images	 can	 be	 snapshotted	 at	 any	 point	 in
time,	 which	 allows	 you	 to	 save	 your	 work	 and	 launch	 new	 instances	 from
updated	images	later.

While	OpenStack	KVM	has	built-in	support	for	snapshotting	in	the	Horizon	web
interface	 and	 via	 the	 command	 line,	 bare-metal	 instances	 require	 a	 more
complex	 process.	 To	 make	 this	 process	 easier,	 we	 developed	 the	 cc-snapshot
tool,	which	 implements	snapshotting	a	bare-metal	 instance	from	command	 line
and	uploads	it	to	Glance,	so	that	it	can	be	immediately	used	to	boot	a	new	bare-
metal	 instance.	 The	 snapshot	 images	 created	 with	 this	 tool	 are	 whole	 disk
images.

For	ease	of	use,	cc-snapshot	has	been	installed	in	all	the	appliances	supported	by
the	Chameleon	project.	If	you	would	like	to	use	it	in	a	different	setting,	it	can	be
downloaded	and	installed	from	the	github	repository.

Once	cc-snapshot	is	 installed,	 to	make	a	snapshot	of	a	bare-metal	 instance,	run
the	following	command	from	inside	the	instance:
sudo	cc-snapshot	<snapshot_name>

You	 can	 verify	 that	 it	 has	 been	 uploaded	 to	Glance	 by	 running	 the	 following
command:
glance	image-list

If	 you	 prefer	 to	 use	 a	 series	 of	 standard	 Unix	 commands,	 or	 are	 generally

https://github.com/ChameleonCloud/ChameleonSnapshotting
https://github.com/ChameleonCloud/ChameleonSnapshotting

interested	 in	 more	 detail	 about	 image	management,	 please	 refer	 to	 our	 image
management	guide.

2.9.3	Use	FPGAs

Consult	 the	 dedicated	 page	 if	 you	 would	 like	 to	 use	 the	 FPGAs	 available	 on
Chameleon.

2.9.4	Next	Step

Now	that	you	have	created	some	resources,	it	is	time	to	interact	with	them!	You
will	find	instructions	to	the	next	step	by	visiting	the	following	link:

Monitor	resources	and	collect	results

2.10	OPENSTACK	HEAT	☁�
Deploying	an	MPI	cluster,	an	OpenStack	installation,	or	any	other	type	of	cluster
in	which	nodes	can	take	on	multiple	roles	can	be	complex:	you	have	to	provision
potentially	hundreds	of	nodes,	configure	them	to	take	on	various	roles,	and	make
them	share	 information	 that	 is	 generated	or	 assigned	only	 at	 deployment	 time,
such	 as	 hostnames,	 IP	 addresses,	 or	 security	 keys.	 When	 you	 want	 to	 run	 a
different	 experiment	 later	 you	 have	 to	 redo	 all	 this	 work.	When	 you	 want	 to
reproduce	the	experiment,	or	allow	somebody	else	to	reproduce	it,	you	have	to
take	very	precise	notes	and	pay	great	attention	to	their	execution.

To	 help	 solve	 this	 problem	 and	 facilitate	 reproducibility	 and	 sharing,	 the
Chameleon	 team	configured	a	 tool	 that	 allows	you	 to	deploy	complex	clusters
with	“one	click”.	This	tool	requires	not	just	a	simple	image	(i.e.,	appliance)	but
also	 a	 document,	 called	 a	 template,	 that	 contains	 the	 information	 needed	 to
orchestrate	 the	 deployment	 and	 configuration	 of	 such	 clusters.	 We	 call	 this
image	 +	 template	 combination	 complex	 appliance	 because	 it	 consists	 of	more
than	just	the	image	(i.e.,	appliance).

2.10.1	Supporting	Complex	Appliances

In	a	nutshell,	complex	appliances	allow	you	to	specify	not	only	what	image	you

https://www.chameleoncloud.org/docs/user-guides/ironic/#snapshotting_an_instance
https://www.chameleoncloud.org/docs/bare-metal-user-guide/fpga/
https://www.chameleoncloud.org/monitor-and-collect/
https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/chameleon/heat.md

want	to	deploy	but	also	on	how	many	nodes	you	want	to	deploy	that	image,	what
roles	 the	 deployed	 instances	 should	 boot	 into	 (such	 as	 e.g.,	 head	 node	 and
worker	node	 in	a	cluster),	what	 information	from	a	specific	 instance	should	be
passed	to	another	instance	in	that	complex	appliance,	and	what	scripts	should	be
executed	 on	 boot	 so	 that	 this	 information	 is	 properly	 used	 for	 configuring	 the
“one	click”	cluster.	For	example,	 a	Network	File	System	 (NFS)	appliance	 that
we	 will	 use	 as	 an	 example	 in	 this	 guide,	 might	 specify	 deployment	 on	 three
nodes,	out	of	which	one	will	be	configured	as	head	node	and	others	as	worker
nodes,	the	information	passed	between	the	images	will	be	hostname	of	the	head
node,	 and	 the	 scripts	 executed	 on	 the	 worker	 nodes	 on	 boot	 will	 put	 that
hostname	in	the	fstab	file.	As	you	can	tell	from	this	description,	images	used	for
complex	 appliances	 are	 typically	 configured	 such	 that	 they	 can	be	booted	 into
any	role	required	on	the	one-click	cluster	we	are	booting;	in	this	case	the	image
will	have	both	the	software	for	NFS	server	node	and	client	node.

Since	 complex	 appliances	 in	 Chameleon	 are	 currently	 implemented	 using	 the
OpenStack	Heat	orchestration	service,	we	will	be	using	OpenStack	terminology
and	features	to	work	with	them.	The	templates	described	previously	are	YAML
files	using	 the	Heat	Orchestration	Template	 (HOT)	 format	 (Heat	 also	 supports
the	 AWS	 CloudFormation	 template	 format,	 but	 this	 is	 not	 covered	 here).	 A
deployed	 complex	 appliance	 is	 referred	 to	 as	 a	 “stack”	 –	 just	 as	 a	 deployed
single	appliance	is	typically	referred	to	as	an	“instance”.	This	guide	will	tell	you
all	 you	 need	 to	 know	 in	 order	 to	 use	 and	 configure	 complex	 appliances	 on
Chameleon;	 if	 you	 would	 like	 to	 know	 more	 about	 Heat,	 please	 refer	 to	 its
official	documentation.

2.10.2	Chameleon	Appliance	Catalog

Our	Appliance	Catalog	has	several	complex	appliances	for	popular	technologies
that	people	want	 to	deploy	such	as	OpenStack	or	MPI	or	even	more	advanced
deployments	such	as	efficient	SR-IOV	enabled	MPI	in	KVM	virtual	machines.
We	 also	 provide	 common	building	 blocks	 for	 cluster	 architectures,	 such	 as	 an
NFS	 share.	 Complex	 appliances	 are	 identified	 by	 a	 badge	 in	 their	 top-right
corner	representing	a	group	of	machines,	as	shown	in	Figure	26.

https://wiki.openstack.org/wiki/Heat
http://docs.openstack.org/developer/heat/template_guide/hot_spec.html
http://docs.openstack.org/developer/heat/
https://www.chameleoncloud.org/appliances/

Figure	26:	NFS	file	share

2.10.3	Deployment

We	will	 explain	 how	 to	 launch	 a	 complex	 appliance	 based	 on	 our	NFS	 share
appliance.	To	launch	a	complex	appliance,	you	only	need	to	follow	these	steps:

1.	 Create	a	lease:	use	the	OpenStack	web	interface	(choose	between	CHI@UC
or	CHI@TACC)	to	create	a	lease.	To	launch	our	NFS	appliance,	reserve	at
least	three	compute	nodes	(the	strict	minimum	is	two	nodes	but	we	will	use
three	in	this	example	and	later	ones).

2.	 Go	to	the	Appliance	Catalog	and	identify	the	appliance	you	want	to	launch.
In	our	case	you	can	go	straight	 to	 the	NFS	share	appliance;	 click	on	 it	 to
open	its	details	page.	You	will	see	a	“Launch”	button	and	a	“Get	Template”
button.	Follow	the	“Get	Template”	link	and	copy	its	url	to	the	clipboard	–
you	will	need	it	in	the	following	steps.

3.	 Click	 on	 the	 “Launch	 Complex	 Appliance	 at	 CHI@TACC”	 or	 “Launch
Complex	 Appliance	 at	 CHI@UC”	 button	 depending	 on	 where	 your
reservation	was	created.

This	will	take	you	to	the	Stacks	page	within	the	Orchestration	menu.	This	page
will	show	the	current	list	of	stacks,	with	controls	to	manage	them	and	create	new
ones.	Since	we	have	not	launched	any	yet,	this	list	will	be	empty	for	now.

We	will	now	create	a	new	stack,	which	corresponds	to	the	launch	of	a	template.

https://www.chameleoncloud.org/appliances/25/
https://www.chameleoncloud.org/appliances/
https://www.chameleoncloud.org/appliances/25/

Click	on	Launch	Stack	on	the	top	right.	A	window	will	pop	up	like	in	Figure	27.

Figure	27:	Select	Template

We	will	deploy	 the	NFS	appliance	described	earlier;	 it	will	consist	of	a	 server
node	and	two	client	nodes.	Change	the	template	source	field	to	URL,	and	paste
the	 URL	 of	 the	 NFS	 share	 template	 (if	 you	 do	 not	 have	 it	 in	 your	 clipboard
anymore	you	will	need	to	go	back	to	the	appliance	and	get	it	by	clicking	on	“Get
template”	again).

Do	not	change	the	environment	source	settings,	and	click	“Next”.

The	next	screen	allows	your	to	enter	input	values	to	your	Heat	template.	Choose
a	name	for	your	stack	(e.g.	my-nfs-cluster).	Ignore	the	“Creation	Timeout”	and
“Rollback	 On	 Failure”	 settings.	 You	 also	 need	 to	 enter	 your	 Chameleon
password.	 Then,	 you	 need	 to	 select	 a	 value	 for	 the	 three	 parameters	 of	 the
template:	for	key_name,	choose	your	SSH	key	pair	(this	key	pair	will	authorize
access	on	each	deployed	instances,	both	server	and	client).	For	nfs_client_count,
change	 the	default	value	of	1	 to	2.	For	 reservation_id,	choose	your	 reservation
created	earlier.	Finally,	click	“Launch”.	As	shown	in	Figure	28.

https://www.chameleoncloud.org/appliances/api/appliances/25/template

Figure	28:	Launch	NFS	Stack

Your	stack	should	be	in	status	“Create	In	Progress”	for	several	minutes	while	it
first	launches	the	NFS	server	instance,	followed	by	the	NFS	client	instances.	As
in	Figure	29.

Figure	29:	Create	in	Progress

It	will	then	move	to	the	status	“Create	Complete”.	As	the	following:	Figure	30.

Figure	30:	Create	Complete

You	can	click	on	the	stack	name	to	get	more	details,	including	a	visualization	of
the	 deployed	 resources,	 as	 pictured	 in	 Figure	31.	 The	 single	machine	 inside	 a
circle	 represents	 the	NFS	 server	 instance.	 The	 rack	 of	machine	 represents	 the
group	of	NFS	client	instances	(in	this	case,	a	group	composed	of	two	instances).
The	server’s	floating	IP	(the	public	IP	assigned	to	a	resource)	is	represented	by
an	IP	in	a	circle;	an	IP	in	a	circle	is	also	used	to	represent	the	association	of	the
IP	with	the	NFS	server	instance	(not	the	greatest	idea	to	use	the	same	symbol	for
both	 the	 IP	and	 the	association	–	we	agree	but	cannot	do	much	about	 it	 at	 the
moment).	Blow	off	some	steam	by	dragging	the	visualization	across	the	screen,
it	can	be	rather	fun!

Figure	31:	Stack	Visualization

You	can	now	ssh	to	the	server	using	the	floating	IP	just	as	you	do	with	regular
instances	(use	the	cc	account).	The	client	does	not	have	a	floating	IP	attached	to

it	 (as	 per	 the	 visualization	 given	 previously)	 but	 you	 can	 connect	 to	 it	 via	 the
server	node	with	the	client’s	private	IP	(connect	to	the	server	with	ssh	-A	to	enable
the	SSH	agent	forwarding	after	 loading	your	key	to	your	SSH	agent	with	 ssh-add	
<path-to-your-key>).

You	can	find	out	the	information	about	the	IPs	and	other	things	if	you	click	the
“Overview”	 tab	 and	 look	 in	 the	 “Outputs”	 section.	Under	 the	 “Resources”	 tab
you	 will	 see	 the	 resources	 described	 previously	 (the	 server,	 clients,	 server’s
public/floating	 IP,	 and	 its	 the	 association)	 and	 information	 about	 them.	 In	 the
“Events”	tab	you	will	see	information	about	the	history	of	the	deployment	so	far.
In	Template	you	will	see	the	template	that	was	used	to	deploy	this	stack.

2.10.4	Heat	Template

The	NFS	share	appliance	deploys:

an	NFS	server	instance,	that	exports	the	directory	/exports/example	to	any
instance	running	on	Chameleon	bare-metal,
one	 or	 several	 NFS	 client	 instances,	 which	 configure	 /etc/fstab	 to	mount
this	NFS	share	to	/mnt	(and	can	subsequently	read	from	and	write	to	it).

This	template	is	reproduced	further	next,	and	includes	inline	comments	starting
with	the	#	character.	There	are	three	main	sections:

resources,
parameters,
outputs.

The	resources	section	is	the	most	important	part	of	the	template:	it	defines	which
OpenStack	resources	to	create	and	configure.	Inside	this	section	you	can	see	four
resources	defined:

nfs_server_floating_ip
nfs_server
nfs_server_ip_association
nfs_clients

The	 first	 resource,	 nfs_server_floating_ip,	 creates	 a	 floating	 IP	 on	 the	 ext-net

public	network.	It	is	not	attached	to	any	instance	yet.

The	second	resource,	nfs_server,	creates	the	NFS	server	instance	(an	instance	is
defined	 with	 the	 type	 OS::Nova::Server	 in	 Heat).	 It	 is	 a	 bare-metal	 instance	 (flavor:	
baremetal)	 using	 the	 CC-CentOS7	 image	 and	 connected	 to	 the	 private	 network
named	sharednet1.	We	set	the	keypair	to	use	the	value	of	the	parameter	defined
earlier,	using	 the	 get_param	 function.	Similarly,	 the	 reservation	 to	use	 is	 passed	 to
the	 scheduler.	 Finally,	 a	 user-data	 script	 is	 given	 to	 the	 instance,	 which
configures	 it	 as	 an	 NFS	 server	 exporting	 /exports/example	 to	 Chameleon
instances.

The	nfs_server_ip_association	resource	associates	the	floating	IP	created	earlier
with	the	NFS	server	instance.

Finally,	 the	 nfs_clients	 resource	 defines	 a	 resource	 group	 containing	 instance
configured	 to	 be	 NFS	 clients	 and	 mount	 the	 directory	 exported	 by	 the	 NFS
server	 defined	 earlier.	 The	 IP	 of	 the	 NFS	 server	 is	 gathered	 using	 the	 get_attr
function,	and	placed	into	user-data	using	the	str_replace	function.

Parameters	 all	 have	 the	 same	 data	 structure:	 each	 one	 has	 a	 name	 (key_name	 or	
reservation_id	 in	 this	 case),	 a	 data	 type	 (number	 or	 string),	 a	 comment	 field	 called
description,	optionally	a	default	value,	and	a	list	of	constraints	(in	this	case	only
one	per	parameter).	Constraints	tell	Heat	to	match	a	parameter	to	a	specific	type
of	 OpenStack	 resource.	 Complex	 appliances	 on	 Chameleon	 require	 users	 to
customize	 at	 least	 the	 key	 pair	 name	 and	 reservation	 ID,	 and	 will	 generally
provide	additional	parameters	to	customize	other	properties	of	the	cluster,	such
as	its	size,	as	in	this	example.

Outputs	are	declared	similarly	to	parameters:	they	each	have	a	name,	an	optional
description,	and	a	value.	They	allow	to	return	information	from	the	stack	to	the
user.
#	This	describes	what	is	deployed	by	this	template.

description:	NFS	server	and	clients	deployed	with	Heat	on	Chameleon

#	This	defines	the	minimum	Heat	version	required	by	this	template.

heat_template_version:	2015-10-15

#	The	resources	section	defines	what	OpenStack	resources	are	to	be	deployed	and

#	how	they	should	be	configured.

resources:

		nfs_server_floating_ip:

				type:	OS::Nova::FloatingIP

				properties:

						pool:	ext-net

		nfs_server:

				type:	OS::Nova::Server

				properties:

						flavor:	baremetal

						image:	CC-CentOS7

						key_name:	{	get_param:	key_name	}

						networks:

									-	network:	sharednet1

						scheduler_hints:	{	reservation:	{	get_param:	reservation_id	}	}

						user_data:	|

								#!/bin/bash

								yum	install	-y	nfs-utils

								mkdir	-p	/exports/example

								chown	-R	cc:cc	/exports

								echo	'/exports/example	10.140.80.0/22(rw,async)	10.40.0.0/23(rw,async)'	>>	/etc/exports

								systemctl	enable	rpcbind	&&	systemctl	start	rpcbind

								systemctl	enable	nfs-server	&&	systemctl	start	nfs-server

		nfs_server_ip_association:

				type:	OS::Nova::FloatingIPAssociation

				properties:

						floating_ip:	{	get_resource:	nfs_server_floating_ip	}

						server_id:	{	get_resource:	nfs_server	}

		nfs_clients:

				type:	OS::Heat::ResourceGroup

				properties:

						count:	{	get_param:	nfs_client_count	}

						resource_def:

								type:	OS::Nova::Server

								properties:

										flavor:	baremetal

										image:	CC-CentOS7

										key_name:	{	get_param:	key_name	}

										networks:

													-	network:	sharednet1

										scheduler_hints:	{	reservation:	{	get_param:	reservation_id	}	}

										user_data:

												str_replace:

														template:	|

																#!/bin/bash

																yum	install	-y	nfs-utils

																echo	"$nfs_server_ip:/exports/example				/mnt/				nfs"	>	/etc/fstab

																mount	-a

														params:

																$nfs_server_ip:	{	get_attr:	[nfs_server,	first_address]	}

#	The	parameters	section	gathers	configuration	from	the	user.

parameters:

		nfs_client_count:

				type:	number

				description:	Number	of	NFS	client	instances

				default:	1

				constraints:

						-	range:	{	min:	1	}

								description:	There	must	be	at	least	one	client.

		key_name:

				type:	string

				description:	Name	of	a	KeyPair	to	enable	SSH	access	to	the	instance

				default:	default

				constraints:

				-	custom_constraint:	nova.keypair

		reservation_id:

				type:	string

				description:	ID	of	the	Blazar	reservation	to	use	for	launching	instances.

				constraints:

				-	custom_constraint:	blazar.reservation

outputs:

		server_ip:

				description:	Public	IP	address	of	the	NFS	server

				value:	{	get_attr:	[nfs_server_floating_ip,	ip]	}

		client_ips:

				description:	Private	IP	addresses	of	the	NFS	clients

				value:	{	get_attr:	[nfs_clients,	first_address]	}

2.10.5	Customizing	an	existing	template

Customizing	an	existing	 template	 is	a	good	way	 to	start	developing	your	own.
We	will	use	a	simpler	template	than	the	previous	example	to	start	with:	it	is	the
Hello	World	complex	appliance.

First,	delete	the	stack	you	launched,	because	we	will	need	all	three	nodes	to	be
free.	To	do	this,	go	back	to	the	Project	>	Orchestration	>	Stacks	page,	select	your
stack,	 and	 then	 click	 on	 the	 red	 “Delete	 Stacks”	 button.	You	will	 be	 asked	 to
confirm,	so	click	on	the	blue	“Delete	Stacks”	button.	As	the	following	picture:
Figure	32.

Figure	32:	Delete	Stacks

The	 template	 for	 the	Hello	World	 complex	 appliance	 is	 reproduced	 next.	 It	 is
similar	 to	 the	NFS	 share	 appliance,	 except	 that	 it	 deploys	only	 a	 single	 client.
You	can	see	that	it	has	four	resources	defined:

nfs_server_floating_ip
nfs_server
nfs_server_ip_association
nfs_client

The	 nfs_client	 instance	 mounts	 the	 NFS	 directory	 shared	 by	 the	 nfs_server
instance,	just	like	in	our	earlier	example.
#	This	describes	what	is	deployed	by	this	template.

description:	NFS	server	and	client	deployed	with	Heat	on	Chameleon

#	This	defines	the	minimum	Heat	version	required	by	this	template.

heat_template_version:	2015-10-15

#	The	resources	section	defines	what	OpenStack	resources	are	to	be	deployed	and

#	how	they	should	be	configured.

resources:

		nfs_server_floating_ip:

				type:	OS::Nova::FloatingIP

				properties:

						pool:	ext-net

https://www.chameleoncloud.org/appliances/26/
https://www.chameleoncloud.org/appliances/26/

Download	this	template	from	the	Hello	World	complex	appliance	details	page	to
your	local	machine,	and	open	it	in	your	favorite	text	editor.

We	will	customize	 the	 template	 to	add	a	 second	NFS	client	by	creating	a	new
resource	 called	 another_nfs_client.	 Add	 the	 following	 text	 to	 your	 template
inside	the	resources	section.	Make	sure	to	respect	the	level	of	indentation,	which
is	important	in	YAML.

		nfs_server:

				type:	OS::Nova::Server

				properties:

						flavor:	baremetal

						image:	CC-CentOS7

						key_name:	{	get_param:	key_name	}

						networks:

									-	network:	sharednet1

						scheduler_hints:	{	reservation:	{	get_param:	reservation_id	}	}

						user_data:	|

								#!/bin/bash

								yum	install	-y	nfs-utils

								mkdir	-p	/exports/example

								chown	-R	cc:cc	/exports

								echo	'/exports/example	10.140.80.0/22(rw,async)	10.40.0.0/23(rw,async)'	>>	/etc/exports

								systemctl	enable	rpcbind	&&	systemctl	start	rpcbind

								systemctl	enable	nfs-server	&&	systemctl	start	nfs-server

		nfs_server_ip_association:

				type:	OS::Nova::FloatingIPAssociation

				properties:

						floating_ip:	{	get_resource:	nfs_server_floating_ip	}

						server_id:	{	get_resource:	nfs_server	}

		nfs_client:

				type:	OS::Nova::Server

				properties:

						flavor:	baremetal

						image:	CC-CentOS7

						key_name:	{	get_param:	key_name	}

						networks:

									-	network:	sharednet1

						scheduler_hints:	{	reservation:	{	get_param:	reservation_id	}	}

						user_data:

								str_replace:

										template:	|

												#!/bin/bash

												yum	install	-y	nfs-utils

												echo	"$nfs_server_ip:/exports/example				/mnt/				nfs"	>	/etc/fstab

												mount	-a

										params:

												$nfs_server_ip:	{	get_attr:	[nfs_server,	first_address]	}

#	The	parameters	section	gathers	configuration	from	the	user.

parameters:

		key_name:

				type:	string

				description:	Name	of	a	KeyPair	to	enable	SSH	access	to	the	instance

				default:	default

				constraints:

				-	custom_constraint:	nova.keypair

		reservation_id:

				type:	string

				description:	ID	of	the	Blazar	reservation	to	use	for	launching	instances.

				constraints:

				-	custom_constraint:	blazar.reservation

		another_nfs_client:

				type:	OS::Nova::Server

				properties:

						flavor:	baremetal

						image:	CC-CentOS7

https://www.chameleoncloud.org/appliances/26/

Now,	 launch	a	new	 stack	with	 this	 template.	Since	 the	 customized	 template	 is
only	 on	 your	 computer	 and	 cannot	 be	 addressed	 by	 a	 URL,	 use	 the	 “Direct
Input”	method	 instead	 and	 copy/paste	 the	 content	 of	 the	 customized	 template.
The	resulting	topology	view	is	shown	in	Figure	33,	as	you	can	see,	the	two	client
instances	are	shown	separately	since	each	one	is	defined	as	a	separate	resource
in	the	template.

Figure	33:	NFS	with	Two	Clients

You	 may	 have	 realized	 already	 that	 while	 adding	 just	 one	 additional	 client
instance	was	easy,	launching	more	of	them	would	require	to	copy	/	paste	blocks
of	YAML	many	times	while	ensuring	that	the	total	count	is	correct.	This	would
be	 easy	 to	 get	 wrong,	 especially	 when	 dealing	 with	 tens	 or	 hundreds	 of
instances.

						key_name:	{	get_param:	key_name	}

						networks:

									-	network:	sharednet1

						scheduler_hints:	{	reservation:	{	get_param:	reservation_id	}	}

						user_data:

								str_replace:

										template:	|

												#!/bin/bash

												yum	install	-y	nfs-utils

												echo	"$nfs_server_ip:/exports/example				/mnt/				nfs"	>	/etc/fstab

												mount	-a

										params:

												$nfs_server_ip:	{	get_attr:	[nfs_server,	first_address]	}

So	instead,	we	leverage	another	construct	from	Heat:	resource	groups.	Resource
groups	 allow	 to	 define	 one	 kind	 of	 resource	 and	 request	 it	 to	 be	 created	 any
number	of	times.

Remove	 the	 nfs_client	 and	 another_client	 resources	 from	 your	 customized
template,	and	replace	them	with	the	following:

A	resource	group	is	configured	with	a	properties	field,	containing	the	definition
of	the	resource	to	launch	(resource_def)	and	the	number	of	resources	to	launch	(count).
Once	launched,	you	will	notice	that	the	topology	view	groups	all	client	instances
under	 a	 single	 Resource	 Group	 icon.	 We	 use	 the	 same	 resource_def	 than	 when
defining	separate	instances	earlier.

Another	 way	 we	 can	 customize	 this	 template	 is	 by	 adding	 outputs	 to	 the
template.	Outputs	allow	a	Heat	 template	 to	return	data	 to	 the	user.	This	can	be
useful	to	return	values	like	IP	addresses	or	credentials	that	the	user	must	know	to
use	the	system.

We	 will	 create	 an	 output	 returning	 the	 floating	 IP	 address	 used	 by	 the	 NFS
server.	We	define	an	outputs	section,	and	one	output	with	the	name	server_ip	and	a
description.	The	value	of	the	output	is	gathered	using	the	 get_attr	 function	which
obtains	the	IP	address	of	the	server	instance.

You	can	get	outputs	in	the	“Overview”	tab	of	the	Stack	Details	page.	If	you	want

		nfs_clients:

				type:	OS::Heat::ResourceGroup

				properties:

						count:	2

						resource_def:

								type:	OS::Nova::Server

								properties:

										flavor:	baremetal

										image:	CC-CentOS7

										key_name:	{	get_param:	key_name	}

										networks:

													-	network:	sharednet1

										scheduler_hints:	{	reservation:	{	get_param:	reservation_id	}	}

										user_data:

												str_replace:

														template:	|

																#!/bin/bash

																yum	install	-y	nfs-utils

																echo	"$nfs_server_ip:/exports/example				/mnt/				nfs"	>	/etc/fstab

																mount	-a

														params:

																$nfs_server_ip:	{	get_attr:	[nfs_server,	first_address]	}

outputs:

		server_ip:

				description:	Public	IP	address	of	the	NFS	server

				value:	{	get_attr:	[nfs_server_floating_ip,	ip]	}

to	use	the	command	line,	install	python-heatclient	and	use	the	heat	output-list	and	heat	output-
show	commands,	or	get	a	full	list	in	the	information	returned	by	heat	stack-show.

Multiple	outputs	 can	be	defined	 in	 the	outputs	 section.	Each	of	 them	needs	 to
have	a	unique	name.	For	example,	we	can	add	another	output	to	list	the	private
IPs	assigned	to	client	instances:

The	 image:	 Figure	 34,	 shows	 the	 resulting	 outputs	 as	 viewed	 from	 the	 web
interface.	Of	course	IP	addresses	will	be	specific	to	each	deployment.

Figure	34:	Outputs

Finally,	we	can	add	a	new	parameter	to	replace	the	hardcoded	number	of	client
instances	 by	 a	 value	 passed	 to	 the	 template.	 Add	 the	 following	 text	 to	 the
parameters	section:

Inside	the	resource	group	definition,	change	count:	2	to	count:	{	get_param:	nfs_client_count	}
to	 retrieve	 and	 use	 the	 parameter	 we	 just	 defined.	 When	 you	 launch	 this
template,	 you	 will	 see	 that	 an	 additional	 parameter	 allows	 you	 to	 define	 the
number	of	client	instances,	like	in	the	NFS	share	appliance.

At	this	stage,	we	have	fully	recreated	the	NFS	share	appliance	starting	from	the

		client_ips:

				description:	Private	IP	addresses	of	the	NFS	clients

				value:	{	get_attr:	[nfs_clients,	first_address]	}

		nfs_client_count:

				type:	number

				description:	Number	of	NFS	client	instances

				default:	1

				constraints:

						-	range:	{	min:	1	}

								description:	There	must	be	at	least	one	client.

Hello	World	 one!	 The	 next	 section	will	 explain	 how	 to	write	 a	 new	 template
from	scratch.

2.10.6	Writing	a	new	template

You	 may	 want	 to	 write	 a	 whole	 new	 template,	 rather	 than	 customizing	 an
existing	one.	Each	template	should	follow	the	same	layout	and	be	composed	of
the	following	sections:

Heat	template	version
Description
Resources
Parameters
Outputs

2.10.6.1	Heat	template	version

Each	Heat	 template	 has	 to	 include	 the	 heat_template_version	key	with	 a	 valid
version	of	HOT	(Heat	Orchestration	Template).	Chameleon	bare-metal	supports
any	HOT	version	up	 to	2015-10-15,	which	 corresponds	 to	OpenStack	Liberty.
The	 Heat	 documentation	 lists	 all	 available	 versions	 and	 their	 features.	 We
recommended	that	you	always	use	the	latest	supported	version	to	have	access	to
all	supported	features:
heat_template_version:	2015-10-15

2.10.6.2	Description

While	 not	 mandatory,	 it	 is	 good	 practice	 to	 describe	 what	 is	 deployed	 and
configured	by	your	template.	It	can	be	on	a	single	line:

If	a	longer	description	is	needed,	you	can	provide	multi-line	text	in	YAML,	for
example:

description:	This	describes	what	this	Heat	template	deploys	on	Chameleon.

description:	>

		This	describes	what	this	Heat

		template	deploys	on	Chameleon.

http://docs.openstack.org/developer/heat/template_guide/hot_spec.html#hot-spec-template-version

2.10.6.3	Resources

The	 resources	 section	 is	 required	 and	 must	 contain	 at	 least	 one	 resource
definition.	A	complete	list	of	resources	types	known	to	Heat	is	available.

However,	 only	 a	 subset	 of	 them	 are	 supported	 by	 Chameleon,	 and	 some	 are
limited	to	administrative	use.	We	recommend	that	you	only	use:

OS::Glance::Image
OS::Heat::ResourceGroup
OS::Heat::SoftwareConfig
OS::Heat::SoftwareDeployment
OS::Heat::SoftwareDeploymentGroup
OS::Neutron::FloatingIP
OS::Neutron::FloatingIPAssociation
OS::Neutron::Port	(advanced	users	only)
OS::Nova::Keypair
OS::Nova::Server

If	you	know	of	another	resource	that	you	would	like	to	use	and	think	it	should	be
supported	 by	 the	 OpenStack	 services	 on	 Chameleon	 bare-metal,	 please	 let	 us
know	via	our	help	desk.

2.10.6.4	Parameters

Parameters	 allow	 users	 to	 customize	 the	 template	 with	 necessary	 or	 optional
values.	For	example,	they	can	customize	which	Chameleon	appliance	they	want
to	deploy,	or	which	key	pair	to	install.	Default	values	can	be	provided	with	the	
default	key,	 as	well	 as	constraints	 to	ensure	 that	only	valid	OpenStack	 resources
can	be	selected.	For	example,	custom_constraint:	glance.image	 restricts	 the	image	selection
to	an	available	OpenStack	 image,	while	providing	a	pre-filled	selection	box	 in
the	 web	 interface.	 More	 details	 about	 constraints	 are	 available	 in	 the	 Heat
documentation.

2.10.6.5	Outputs

Outputs	allow	template	to	give	information	from	the	deployment	to	users.	This

http://docs.openstack.org/developer/heat/template_guide/openstack.html
http://docs.openstack.org/developer/heat/template_guide/hot_spec.html#parameter-constraints

can	 include	 usernames,	 passwords,	 IP	 addresses,	 hostnames,	 paths,	 etc.	 The
outputs	declaration	is	using	the	following	format:

Generally	values	will	be	calls	to	get_attr,	get_param,	or	some	other	function	to
get	 information	 from	 parameters	 or	 resources	 deployed	 by	 the	 template	 and
return	them	in	the	proper	format	to	the	user.

2.10.7	Sharing	new	complex	appliances

If	you	have	written	your	own	complex	appliances	or	substantially	customized	an
existing	one,	we	would	love	if	you	shared	them	with	our	user	community!

The	process	is	very	similar	to	regular	appliances:	log	into	the	Chameleon	portal,
go	to	the	appliance	catalog,	and	click	on	the	button	in	the	top-right	corner:	“Add
an	appliance”	(you	need	to	be	logged	in	to	see	it	as	the	following:	Figure	35).

Figure	35:	Add	an	Appliance

You	will	be	prompted	to	enter	a	name,	description,	and	documentation.	Instead
of	providing	appliance	 IDs,	 copy	your	 template	 to	 the	dedicated	 field.	Finally,
share	 your	 contact	 information	 and	 assign	 a	 version	 string	 to	 your	 appliance.
Once	 submitted,	 your	 appliance	 will	 be	 reviewed.	 We	 will	 get	 in	 touch	 if	 a
change	is	needed,	but	if	it’s	all	good	we	will	publish	it	right	away!

2.10.8	Advanced	topics

2.10.8.1	All-to-all	information	exchange

The	previous	examples	have	all	used	user-data	scripts	to	provide	instances	with

outputs:

		first_output_name:

				description:	Description	of	the	first	output

				value:	first_output_value

		second_output_name:

				description:	Description	of	the	second	output

				value:	second_output_value

https://www.chameleoncloud.org/appliances/

contextualization	 information.	 While	 it	 is	 easy	 to	 use,	 this	 contextualization
method	has	a	major	drawback:	because	it	 is	given	to	 the	 instance	as	part	of	 its
launch	 request,	 it	 cannot	 use	 any	 context	 information	 that	 is	 not	 yet	 known	 at
this	time.

In	 practice,	 this	 means	 that	 in	 a	 client-server	 deployment,	 only	 one	 of	 these
pattern	will	be	possible:

The	server	has	to	be	deployed	first,	and	once	it	is	deployed,	the	clients	can
be	 launched	 and	 contextualized	 with	 information	 from	 the	 server.	 The
server	 will	 not	 know	 about	 the	 clients	 unless	 there	 is	 a	 mechanism	 (not
managed	by	Heat)	for	the	client	to	contact	the	server.

The	clients	have	to	be	deployed	first,	and	once	they	are	deployed,	the	server
can	be	launched	and	contextualized	with	information	from	the	clients.	The
clients	 will	 not	 know	 about	 the	 server	 unless	 there	 is	 a	 mechanism	 (not
managed	by	Heat)	for	the	server	to	contact	the	clients.

This	limitation	was	already	apparent	in	our	NFS	share	appliance:	this	is	why	the
server	instance	exports	the	file	system	to	all	bare-metal	instances	on	Chameleon,
because	it	does	not	know	which	specific	IP	addresses	are	allocated	to	the	clients.

This	 limitation	 is	 even	 more	 important	 if	 the	 deployment	 is	 not	 hierarchical,
i.e.	all	 instances	need	 to	know	about	all	others.	For	example,	a	cluster	with	 IP
and	 hostnames	 populated	 in	 /etc/hosts	 required	 each	 instance	 to	 be	 known	 by
every	other	instance.

This	 section	 presents	 a	 more	 advanced	 form	 of	 contextualization	 that	 can
perform	this	kind	of	information	exchange.	This	is	implemented	by	Heat	agents
running	 inside	 instances	and	communicating	with	 the	Heat	service	 to	send	and
receive	 information.	This	means	you	will	need	 to	use	an	 image	bundling	 these
agents.	 Currently,	 our	 CC-CentOS7	 appliance	 and	 its	 CUDA	 version	 are	 the
only	 ones	 supporting	 this	 mode	 of	 contextualization.	 If	 you	 build	 your	 own
images	 using	 the	CC-CentOS7	 appliance	 builder,	 you	 will	 automatically	 have
these	agents	installed.

This	contextualization	is	performed	with	several	Heat	resources:

https://github.com/ChameleonCloud/CC-CentOS7

OS::Heat::SoftwareConfig.	This	resource	describes	code	to	run	on	an	instance.	It	can
be	configured	with	inputs	and	provide	outputs.
OS::Heat::SoftwareDeployment.	 This	 resource	 applies	 a	 SoftwareConfig	 to	 a	 specific
instance.
OS::Heat::SoftwareDeploymentGroup.	This	resource	applies	a	SoftwareConfig	to	a	specific
group	of	instances.

The	template	next	illustrates	how	it	works.	It	launches	a	group	of	instances	that
will	 automatically	 populates	 their	 /etc/hosts	 file	 with	 IP	 and	 hostnames	 from
other	instances	in	the	deployment.
heat_template_version:	2015-10-15

description:	>

		This	template	demonstrates	how	to	exchange	hostnames	and	IP	addresses	to	populate	/etc/hosts.

parameters:

		flavor:

				type:	string

				default:	baremetal

				constraints:

				-	custom_constraint:	nova.flavor

		image:

				type:	string

				default:	CC-CentOS7

				constraints:

				-	custom_constraint:	glance.image

		key_name:

				type:	string

				default:	default

				constraints:

				-	custom_constraint:	nova.keypair

		instance_count:

				type:	number

				default:	2

		reservation_id:

				type:	string

				description:	ID	of	the	Blazar	reservation	to	use	for	launching	instances.

				constraints:

				-	custom_constraint:	blazar.reservation

resources:

		export_hosts:

				type:	OS::Heat::SoftwareConfig

				properties:

						outputs:

								-	name:	hosts

						group:	script

						config:	|

								#!/bin/sh

								(echo	-n	$(facter	ipaddress);	echo	-n	'	';	echo	$(facter	hostname))	>	${heat_outputs_path}.hosts

		export_hosts_sdg:

				type:	OS::Heat::SoftwareDeploymentGroup

				properties:

						config:	{	get_resource:	export_hosts	}

						servers:	{	get_attr:	[server_group,	refs_map]	}

						signal_transport:	HEAT_SIGNAL

		populate_hosts:

				type:	OS::Heat::SoftwareConfig

				properties:

						inputs:

								-	name:	hosts

						group:	script

						config:	|

								#!/usr/bin/env	python

								import	ast

There	are	two	SoftwareConfig	resources.

The	first	SoftwareConfig,	export_hosts,	uses	the	factor	tool	to	extract	IP	address
and	hostname	into	a	single	line	(in	the	format	expected	for	/etc/hosts)	and	writes	it
to	a	special	path	(${heat_outputs_path}.hosts).	This	prompts	Heat	to	assign	the	content	of
this	file	to	the	output	with	the	name	hosts.

The	 second	 SoftwareConfig,	 populate_hosts,	 takes	 as	 input	 a	 variable	 named
hosts,	and	applies	a	script	that	reads	the	variable	from	the	environment,	parses	it
with	ast.literal_eval	(as	it	is	formatted	as	a	Python	dict),	and	writes	each	value	of
the	dictionary	to	/etc/hosts.

The	 SoftwareDeploymentGroup	 resources	 export_hosts_sdg	 and
populate_hosts_sdg	apply	 each	SoftwareConfig	 to	 the	 instance	ResourceGroup
with	the	correct	configuration.

Finally,	the	instance	ResourceGroup	is	configured	so	that	each	instance	uses	the
following	contextualization	method	instead	of	a	user-data	script:

								import	os

								import	string

								import	subprocess

								hosts	=	os.getenv('hosts')

								if	hosts	is	not	None:

												hosts	=	ast.literal_eval(string.replace(hosts,	'\n',	'\\n'))

								with	open('/etc/hosts',	'a')	as	hosts_file:

										for	ip_host	in	hosts.values():

														hosts_file.write(ip_host.rstrip()	+	'\n')

		populate_hosts_sdg:

				type:	OS::Heat::SoftwareDeploymentGroup

				depends_on:	export_hosts_sdg

				properties:

						config:	{	get_resource:	populate_hosts	}

						servers:	{	get_attr:	[server_group,	refs_map]	}

						signal_transport:	HEAT_SIGNAL

						input_values:

								hosts:	{	get_attr:	[export_hosts_sdg,	hosts]	}

		server_group:

				type:	OS::Heat::ResourceGroup

				properties:

						count:	{	get_param:	instance_count	}

						resource_def:

								type:	OS::Nova::Server

								properties:

										flavor:	{	get_param:	flavor	}

										image:	{	get_param:	image	}

										key_name:	{	get_param:	key_name	}

										networks:

													-	network:	sharednet1

										scheduler_hints:	{	reservation:	{	get_param:	reservation_id	}	}

										user_data_format:	SOFTWARE_CONFIG

										software_config_transport:	POLL_SERVER_HEAT

outputs:

		deployment_results:

				value:	{	get_attr:	[export_hosts_sdg,	hosts]	}

You	 can	 follow	 the	 same	 template	 pattern	 to	 configure	 your	 own	 deployment
requiring	all-to-all	information	exchange.

2.11	OPENSTACK	BARE	METAL	☁�
In	 this	 page	 you	 will	 find	 documentation	 guiding	 you	 through	 the	 bare-metal
deployment	 features	 available	 in	 Chameleon.	 Chameleon	 gives	 users
administrative	 access	 to	bare-metal	 compute	 resources	 to	 run	 cloud	 computing
experiments	with	a	high	degree	of	customization	and	repeatability.	Typically,	an
experiment	will	go	through	several	phases,	as	illustrated	in	+Figure	36.

Figure	 36:	 Experimenting	 with	 Bare	Metal	 resources	 on	 Chameleon
cloud

The	 bare-metal	 user	 guide	 comes	 in	 two	 editions.	 The	 first	 is	 how	 to	 use
Chameleon	 resources	 via	 the	web	 interface,	 the	 recommended	 choice	 for	 new
users	to	quickly	learn	how	to	use	our	testbed:

Get	started	with	Chameleon	using	the	web	interface

1.	 Discover	Resources

2.	 Provision	Resources

3.	 Configure	and	Interact

user_data_format:	SOFTWARE_CONFIG

software_config_transport:	POLL_SERVER_HEAT

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/chameleon/baremetal.md
https://www.chameleoncloud.org/discover-resources
https://www.chameleoncloud.org/discover-resources/
https://www.chameleoncloud.org/provision-resources/
https://www.chameleoncloud.org/configure-and-interact/

4.	 Monitor	and	Collect	Results

The	second	targets	advanced	users	who	are	already	familiar	with	Chameleon	and
would	 like	 to	 learn	 how	 to	 use	 Chameleon	 from	 the	 command	 line	 or	 with
scripts.

Get	started	with	Chameleon	using	the	command	line	(advanced)

1.	 Discover	Resources

2.	 Provision	Resources

3.	 Configure	and	Interact

4.	 Monitor	and	Collect	Results

You	 do	 not	 need	 to	 strictly	 follow	 the	 documentation	 sequentially.	 However,
note	 that	 some	 steps	 assume	 that	 previous	 ones	 have	 been	 successfully
performed.

You	can	also	consult	documentation	describing	how	to	use	advanced	features	of
Chameleon	not	covered	by	the	previous	guides:

the	Chameleon	Object	Store,

network	isolation	for	bare	metal.

2.12	CHAMELEON	CLOUD	FREQUENTLY	ASKED	QUESTIONS

☁�
2.12.1	Appliances

2.12.1.1	What	is	an	appliance?

An	appliance	is	an	application	packaged	together	with	the	environment	that	this
application	 requires.	 For	 example,	 an	 appliance	 can	 consists	 of	 the	 operating
system,	libraries	and	tools	used	by	the	application,	configuration	features	such	as
environment	 variable	 settings,	 and	 the	 installation	 of	 the	 application	 itself.

https://www.chameleoncloud.org/monitor-and-collect/
https://www.chameleoncloud.org/discover-resources-command-lines
https://www.chameleoncloud.org/discover-resources-command-lines/
https://www.chameleoncloud.org/advanced-provision-resources/
https://www.chameleoncloud.org/advanced-configure-and-interact/
https://www.chameleoncloud.org/monitor-and-collect/
https://www.chameleoncloud.org/docs/bare-metal-user-guide/chameleon-object-store/
https://www.chameleoncloud.org/docs/bare-metal-user-guide/network-isolation-bare-metal/
https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/chameleon/faq.md

Examples	of	appliances	might	include	a	KVM	virtual	machine	image,	a	Docker
image,	or	a	bare	metal	image.	Chameleon	appliance	refers	to	bare	metal	images
that	can	be	deployed	on	the	Chameleon	testbed.	Since	an	appliance	captures	the
experimental	 environment	 exactly,	 it	 is	 a	 key	 element	 of	 reproducibility;
publishing	an	appliance	used	to	obtain	experimental	results	will	go	a	long	way	to
allowing	others	to	reproduce	and	build	on	your	research	easily.

To	 deploy	 distributed	 applications	 on	 several	 Chameleon	 instances,	 complex
appliances	combine	an	image	and	a	template	describing	how	the	cluster	should
be	 configured	 and	 contextualized.	 You	 can	 read	 more	 about	 them	 in	 the
Complex	Appliances	documentation.

2.12.1.2	What	is	the	Appliance	Catalog?

The	Chameleon	Appliance	Catalog	is	a	repository	that	allows	users	to	discover,
publish,	and	share	appliances.	The	appliance	catalog	contains	useful	 images	of
both	 bare	 metal	 and	 virtual	 machine	 appliances	 supported	 by	 the	 Chameleon
team	as	well	appliances	contributed	by	users.

2.12.1.3	How	do	I	publish	an	appliance	in	the	Appliance	Catalog?

The	 new	Appliance	Catalog	 allows	 you	 to	 easily	 publish	 and	 share	 your	 own
appliances	so	that	others	can	discover	them	and	use	them	either	to	reproduce	the
research	of	others	or	as	a	basis	for	their	own	research.	Before	creating	your	own
appliance	it	is	advisable	to	review	other	appliances	on	the	Chameleon	Appliance
Catalog	in	order	to	get	an	idea	of	the	categories	you	will	want	to	contribute	and
what	others	have	done.

Once	you	are	ready	to	proceed,	an	appliance	can	be	contributed	to	Chameleon	in
the	following	steps:

1.	 Create	 the	 appliance	 itself.	You	may	want	 to	 test	 it	 as	well	 as	 give	 some
thought	to	what	support	you	are	willing	to	provide	for	the	appliance	(e.g.,	if
your	group	developed	and	supports	a	software	package,	the	appliance	may
be	 just	 a	 new	way	 of	 packaging	 the	 software	 and	making	 it	 available,	 in
which	 case	 your	 standard	 support	 channels	 may	 be	 appropriate	 for	 the
appliance	as	well).

https://www.chameleoncloud.org/docs/complex-appliances/
https://www.chameleoncloud.org/appliances/
https://www.chameleoncloud.org/appliances/

2.	 Upload	 the	 appliance	 to	 the	 Chameleon	 Image	 Repository	 (Glance)	 and
make	the	image	public.	In	order	to	enter	the	appliance	into	the	Catalog	you
will	be	asked	 to	provide	 the	Glance	 ID	for	 the	 image.	These	 IDs	are	per-
cloud,	 so	 that	 there	 are	 three	 options	 right	 now:	 bare	 metal/CHI	 at
University	of	Chicago,	bare	metal/CHI	at	TACC,	and	OpenStack/KVM	at
TACC.	You	will	need	 to	provide	at	 least	one	appliance,	but	may	want	 to
provide	all	three.

3.	 Go	 to	 the	 Appliance	 Catalog	 Create	 Appliance	 web	 form,	 fill	 out,	 and
submit	 the	 form.	 Be	 prepared	 to	 provide	 the	 following	 information:	 a
descriptive	 name	 (this	 sometimes	 requires	 some	 thought!),	 author	 and
support	contact,	version,	and	an	informative	description.	The	description	is
a	very	important	part	of	the	appliance	record;	others	will	use	it	to	evaluate	if
the	appliance	contains	tools	they	need	for	their	research	so	it	makes	sense	to
prepare	 it	 carefully.	To	make	your	 description	 effective	 you	may	want	 to
think	of	the	following	questions:	what	does	the	appliance	contain?	what	are
the	specific	packages	and	their	versions?	what	is	it	useful	for?	where	can	it
be	deployed	and/or	what	 restrictions/limitations	does	 it	have?	how	should
users	connect	to	it	/	what	accounts	are	enabled?

If	you	are	adding	a	complex	appliance,	skip	the	image	ID	fields	and	enter	your
template	instead	in	the	dedicated	text	box.

As	always,	 if	 you	encounter	 any	problems	or	want	 to	 share	with	us	 additional
improvements	we	 should	 do	 to	 the	 process,	 please	 do	 not	 hesitate	 to	 submit	a
ticket.

2.12.1.4	How	can	I	manage	an	appliance	on	Appliance	Catalog?

If	you	are	the	owner	of	the	appliance,	you	can	edit	the	appliance	data,	such	as	the
description	or	the	support	information.	Browse	to	the	appliance	that	you	want	to
edit	and	view	its	Details	page.	At	the	top	right	of	the	page	is	an	Edit	button.	You
will	be	presented	with	the	same	web	form	as	when	creating	the	appliance,	pre-
filled	with	 the	 appliances	 current	 information.	Make	changes	 as	necessary	 and
click	Save	at	the	bottom	of	the	page.

And	 finally,	you	can	delete	 appliances	you	had	made	available.	Browse	 to	 the

https://www.chameleoncloud.org/appliances/create/
https://www.chameleoncloud.org/help/

appliance	that	you	want	to	delete	and	click	Edit	on	the	Appliance	Details	page.
At	the	bottom	of	the	page	is	a	Delete	button.	You	will	be	asked	to	confirm	once
more	that	you	do	want	to	delete	this	appliance.	After	confirming,	the	appliance
will	be	removed	and	no	longer	listed	on	the	Appliance	Catalog.

2.12.1.5	Why	are	there	different	image	IDs	for	the	same	appliance?

The	three	clouds	forming	the	Chameleon	testbed	are	fully	separated,	each	having
its	 own	 Glance	 image	 repository.	 The	 same	 appliance	 image	 uploaded	 to	 the
three	clouds	will	produce	three	different	image	IDs.

In	 addition,	 it	 is	 sometimes	 needed	 to	 customize	 an	 appliance	 image	 for	 each
site,	resulting	in	slightly	different	image	files.

2.12.1.6	Can	I	use	another	operating	system	on	bare-metal?

The	 recommended	 appliance	 for	 Chameleon	 is	 CentOS	 7	 (supported	 by
Chameleon	staff),	or	appliances	built	on	top	of	it.
These	 appliances	 provide	 Chameleon-specific	 customizations,	 such	 as	 login
using	 the	 cc	 account,	 the	 cc-checks	 utility	 to	 verify	 hardware	 against	 our
resource	registry,	gathering	of	metrics,	etc.

Since	 2016,	 we	 also	 provide	 and	 support	 Ubuntu	 14.04	 and	 16.04	 appliances
with	the	same	functionality.

2.12.2	Bare	Metal	Troubleshooting

2.12.2.1	Why	are	my	Bare	Metal	instances	failing	to	launch?

The	 Chameleon	 Bare	 Metal	 clouds	 require	 users	 to	 reserve	 resources	 before
allowing	 them	 to	 launch	 instances.	Please	 follow	 the	documentation	 and	make
sure	that:

1.	 You	 have	 created	 a	 lease	 and	 it	 has	 started	 (the	 associated	 reservation	 is
shown	as	Active)

2.	 You	have	selected	your	reservation	in	the	Launch	Instance	panel

https://www.chameleoncloud.org/docs/bare-metal/

If	you	still	cannot	start	instances,	please	open	a	ticket	with	our	help	desk.

2.12.3	OpenStack	KVM	Troubleshooting

2.12.3.1	Why	are	my	OpenStack	KVM	instances	failing	to	launch?

If	you	get	an	error	stating	that	No	valid	host	was	found,	it	might	be	caused	by	a
lack	of	 resources	 in	 the	cloud.	The	Chameleon	staff	continuously	monitors	 the
utilization	of	the	testbed,	but	there	might	be	times	when	no	more	resources	are
available.	If	the	error	persists,	please	open	a	ticket	with	our	help	desk.

2.12.3.2	Why	can	I	not	ping	or	SSH	to	my	instance?

While	the	possibility	that	the	system	is	being	taking	over	by	nanites	should	not
be	 discounted	 too	 easily,	 it	 is	 always	 prudent	 to	 first	 check	 for	 the	 following
three	settings:

Do	 you	 have	 a	 floating	 IP	 associated	 with	 your	 instance?	 By	 default,
instances	 do	 not	 have	 publicly-accessible	 IP	 addresses	 assigned.	 See	 our
documentation	on	Associating	a	Floating	IP	Address.

Does	 your	 security	 group	 allow	 incoming	 ICMP	 (e.g.	 ping)	 traffic?	 By
default,	 firewall	 rules	do	not	 allow	ping	 to	your	 instances.	 If	you	wish	 to
enable	 it,	 see	 our	 documentation	 on	 Adding	 a	 Security	 Group	 to	 an
Instance.

Does	your	 security	group	 allow	 incoming	SSH	 (TCP	port	 22)	 traffic?	By
default,	 firewall	 rules	do	not	allow	SSH	 to	your	 instances.	 If	you	wish	 to
enable	 it,	 see	 our	 documentation	 on	 Adding	 a	 Security	 Group	 to	 an
Instance.

If	none	of	these	solve	your	problem,	please	open	a	ticket	with	our	help	desk,	and
send	us	the	results	of	the	three	previous	setting	(and	any	evidence	of	nanites	you
find	as	well).

https://www.chameleoncloud.org/user/help/
https://www.chameleoncloud.org/user/help/
https://chameleoncloud.readthedocs.io/en/latest/technical/kvm.html#kvm-associate-ip
https://chameleoncloud.readthedocs.io/en/latest/technical/kvm.html#kvm-security-group
https://chameleoncloud.readthedocs.io/en/latest/technical/kvm.html#kvm-security-group
https://www.chameleoncloud.org/user/help/

3	REFERENCES

☁�

https://github.com/cloudmesh-community/book/blob/master/chapters/empty.md

	1 PREFACE
	1.1 Disclaimer ☁️
	1.1.1 Acknowledgment
	1.1.2 Extensions

	2 CHAMELEON CLOUD
	2.1 Chameleon Cloud Security Warning ☁️
	2.2 Resources ☁️
	2.2.1 Outages
	2.2.2 Account Creation
	2.2.3 Join a Project
	2.2.4 Usage Restriction

	2.3 Chameleon Cloud Hardware ☁️
	2.3.1 Standard Cloud Units
	2.3.2 Network
	2.3.3 Shared Storage
	2.3.4 Heterogeneous Compute Hardware

	2.4 Chameleon Cloud Charge Rates ☁️
	2.4.1 Service Units
	2.4.2 Project Allocation Size

	2.5 Getting Started on Chameleon Cloud ☁️
	2.5.1 Step 1: Create a Chameleon account
	2.5.2 Step 2: Create or join a project
	2.5.3 Step 3: Start using Chameleon

	2.6 OpenStack Virtual Machines ☁️
	2.6.1 Web Interface
	2.6.1.1 Managing Virtual Machine Instances
	2.6.1.2 Snapshots
	2.6.1.3 Firewall (Access Security)

	2.6.2 OpenStack REST Interfaces
	2.6.3 Downloading and uploading data

	2.7 Cloudmesh OpenStack Command Line Interface ☁️
	2.7.1 Instalation of Cloudmesh Client
	2.7.2 Floating IP Address

	2.8 OpenStack Command Line Interface ☁️
	2.8.0.1 Creating OpenStack RC via the editor
	2.8.0.2 Creating OpenStack RC via the GUI
	2.8.1 CLI to Manage Virtual Machines
	2.8.2 KeyPair Registration
	2.8.3 Start a new VM instance
	2.8.4 Floating IP Address
	2.8.5 Termination of VM Instance

	2.9 OpenStack Horizon Graphical User Interface ☁️
	2.9.1 Configure resources
	2.9.2 Interact with resources
	2.9.2.1 Snapshot an instance

	2.9.3 Use FPGAs
	2.9.4 Next Step

	2.10 OpenStack HEAT ☁️
	2.10.1 Supporting Complex Appliances
	2.10.2 Chameleon Appliance Catalog
	2.10.3 Deployment
	2.10.4 Heat Template
	2.10.5 Customizing an existing template
	2.10.6 Writing a new template
	2.10.6.1 Heat template version
	2.10.6.2 Description
	2.10.6.3 Resources
	2.10.6.4 Parameters
	2.10.6.5 Outputs

	2.10.7 Sharing new complex appliances
	2.10.8 Advanced topics
	2.10.8.1 All-to-all information exchange

	2.11 Openstack Bare Metal ☁️
	2.12 Chameleon Cloud Frequently Asked Questions ☁️
	2.12.1 Appliances
	2.12.1.1 What is an appliance?
	2.12.1.2 What is the Appliance Catalog?
	2.12.1.3 How do I publish an appliance in the Appliance Catalog?
	2.12.1.4 How can I manage an appliance on Appliance Catalog?
	2.12.1.5 Why are there different image IDs for the same appliance?
	2.12.1.6 Can I use another operating system on bare-metal?

	2.12.2 Bare Metal Troubleshooting
	2.12.2.1 Why are my Bare Metal instances failing to launch?

	2.12.3 OpenStack KVM Troubleshooting
	2.12.3.1 Why are my OpenStack KVM instances failing to launch?
	2.12.3.2 Why can I not ping or SSH to my instance?

	3 REFERENCES

